Спецификация для заключительного (очного) этапа Олимпиады «Я – профессионал»

- I. Заключительный этап олимпиады по направлению «Ядерные физика и технологии» проводится в 2 дня.
- II. Спецификация к заданиям очного тура направления «Ядерные физика и технологии». Категория «Магистратура/специалитет» (для поступающих в аспирантуру)

<u>Первый день состязания.</u> Проводится индивидуальный конкурс, состоящий из двух блоков в соответствии со спецификацией,				
приведенной ниже.				
Указание уровня подготовки	Данное задание подготовлено в рамках олимпиады «Я — профессионал» и предназначено для оценки знаний и навыков студентов магистратуры и специалитета, обучающихся в первую очередь по направлениям подготовки и специальностям: • «Ядерные физика и технологии»; • «Ядерная энергетика и теплофизика»; • «Физика», • «Ядерные реакторы и материалы» • «Атомные станции: проектирование, эксплуатация и инжиниринг» а также студентов других направлений подготовки и специальностей, интересующихся исследованиями и разработками в области атомной энергетики, ядерной физики, радиационных технологий.			
Максимальное количество	100 баллов			
баллов за задание				
Время на выполнение заданий	240 минут			
Список ресурсов для самостоятельной подготовки	В.А.Апсэ, А.И.Ксенофонтов, В.И.Савандер, Г.В.Тихомиров, А.Н.Шмелев. Физико-технические основы современной ядерной энергетики. Перспективы и экологические аспекты // Учебное пособие. Долгопрудный: Издательский Дом «Интеллект», 2014. — 296 стр. И.М.Ободовский. Физические основы радиационных технологий // Учебное пособие. Долгопрудный: Издательский Дом «Интеллект», 2014. — 352 стр. Ишханов Б.С., Капитонов И.М., Юдин Н.П. Частицы и атомные ядра. 2007. 584 стр. Мухин К.Н. Экспериментальная ядерная физика: учебник. Санкт-Петербург: Лань. Т.1: Физика атомного ядра. 2009. 383 с.			

	Мухин К.Н. Экспериментальная ядерная физика: учебник. Санкт-Петербург: Лань. Т.2: Физика				
	ядерных реакций. 2008. 318 с.				
	Мухин К.Н. Экспериментальная ядерная физика: учебник. Санкт-Петербург: Лань. Т.3: Физика				
	элементарных частиц. 2008. 412 с.				
	Сивухин Д.В. Общий курс физики. Том 5. Атомная и ядерная физика. Учебное пособие для вузов в				
	5-ти томах, 2-е изд., стереот. Москва: Физматлит; Изд-во МФТИ. 2002. 784 с.				
	Савандер В.И., Увакин М.А. Физическая теория ядерных реакторов. Ч. 1 Однородная				
	размножающая среда и теория гетерогенных структур. Учебное пособие. М.: НИЯУ МИФИ,				
	Савандер В.И., Увакин М.А. Физическая теория ядерных реакторов. Ч. 2 Теория возмущений и				
	медленные нестационарные процессы. Учебное пособие. М.: НИЯУ МИФИ, 2013. –152 с.				
Описание структуры задания. Указание максимального балла	Задание очного тура состоит из десяти заданий по темам: основные положения ядерной физики, атомной энергетики, радиационных технологий, физики и теплофизики ядерных реакторов.				
за каждое задание.	Задания разделены на 3 блока различной степени сложности.				
	Первый блок	состоит из пяти заданий низкой степени сложности. Каждое задание требует написания развернутой схемы решения и получения численного ответа. Задания 1-5 оценивается в 3-5 баллов.			
	Второй блок	состоит из трех заданий средней степени сложности. Каждое задание требует написания развернутой схемы решения и получения численного ответа.			
		Задания 6-8 оценивается в 10 баллов.			
	Третий блок	состоит из двух заданий высокой степени сложности. Каждое задание требует написания развернутой схемы решения и получения численного ответа.			
		Задания 9-10 оценивается в 15 баллов.			
	Задания первого дня состязаний позволяют набрать до 80 баллов из 100 возможных за вес				
	тур.				
Второй день состязания. Прово	T				
Регламент проведения	- Задание студентам выдается вечером накануне.				
испытания	- В день проведения испытания:				
	- 2 часа - экспресс-обучение по работе в программном комплексе ЛОГОС;				
	- 6 часов - решение поставленной задачи (в процессе работы в ЛОГОСе у студентов будет				
	возможность задавать технические вопросы экспертам).				

Формат проведения проектного	Проведение проектного конкурса возможно как в индивидуальном режиме, так и в командном.
конкурса	Во втором случае разработка проекта осуществляется в составе команды, которая формируется
	случайным образом с учетом индивидуальных достижений участников по результатам первого дня
	состязания.
	Итоговый индивидуальный балл каждого участника за второй день олимпиады формируется из
	командного балла, полученного за разработку проекта и балла за индивидуальный вклад каждого
	участника в командную работу. Этот балл определяется путем заполнения каждым членом
	команды опросного листа, в котором он должен ранжировать вклад каждого участника в
	командную работу. Суммирование рангов членов команды позволит выделить вклад членов
	команды в общий результат.
	За задание второго дня состязаний возможно получение до 20 баллов из 100 возможных за весь
	очный тур
	Итоговый результат каждого участника получается в результате сложения результатов первого и
	второго дня проведения состязания.

Элемент содержания/тема	Что проверяется в рамках темы]	
		Демоверсия	
		Номер и тип задания.	Уровень сложности. Максимальный балл
Основы ядерной физики	Знание основных свойств ядер, ядерных	Задания 2, 4	Задания 2, 4 -низкий
	моделей, типов взаимодействий частиц с	с описанием алгоритма	уровень,
	веществом, ядерных реакций, принципов	решения и	максимально 5 баллов;
	детектирования ионизирующих излучений.	представлением	
		численного ответа	
Основы атомной энергетики	Понимание устройства атомной	Задания 1, 3, 10 с	Задания 1, 3 – низкий
	электростанции и физических процессов,	описанием алгоритма	уровень,
	которые в ней протекают	решения и	максимально 5 баллов;
		представлением	Задание 10 – высокий
		численного ответа	уровень, 15 баллов
Основы радиационных	Знание принципов переноса гамма-	Задание 6, 7, 9 с	Задания 6, 7 – средний
технологий	излучения в веществе, а также определение	описанием алгоритма	уровень, 10 баллов;

	дозы излучения	решения и представлением	Задание 9 – высокий уровень, 15 баллов
		численного ответа	
Основы физики и	Знание процессов переноса тепла,	Задания 5, 8 с описанием	Задание 5 -низкий
теплофизики ядерных реакторов	гидродинамики в ядерных реакторах, а также нейтронно-физических процессов,	алгоритма решения и представлением	уровень, максимально 5 баллов;
	протекающих в активной зоне.	численного ответа	Задание 8 – средний уровень, 10 баллов

Демонстрационный вариант

задания заключительного (очного) этапа по направлению Ядерные физика и технологии

Категория «Магистратура/специалитет» (для поступающих в аспирантуру)

Примеры заданий первого дня состязаний

Примеры заданий первого блока

Пример №1

Какая доля ядер 222 Rа распадется за 5,2 дня? Период полураспада $T_{1/2} = 3,83$ дня.

Ответ: 61%.

Пример №2

В результате обогащения 800 г природного урана с концентрацией U-235 0.7% образовалось 200 г отвального урана с концентрацией 0,5%. Какова концентрация U-235 в обогащенном уране?

Ответ: 0,76%.

Пример заданий второго блока

Пример №1

Источник гамма-квантов содержит 10 г урана-232, находящегося в равновесии со своими продуктами распада. Известно, что в цепочке распада этого изотопа есть три последовательных изотопа, имеющие значимые каналы минус-бета распада: Pb-212, Bi-212, Tl-208. Во всех этих распадах появляются гамма-кванты. Какая энергия гамма-квантов выделяется в этом источнике за одну секунду? Нарисуйте схему распадов.

Ответ: $W = 1.87 \, \text{Дж/c}.$

Пример №2

Стальной образец массой 2 кг, который содержал 0.5% природного марганца, поместили в ядерный реактор с тепловым потоком $5\cdot10^{13}$ н/(см $^2\cdot$ с). В результате радиационного захвата нейтронов образуется радиоактивный изотоп марганца 56 Mn. Образец вынули через 10 суток облучения. Какой источник гамма-квантов будет в нем через один час после выдержки.

Ответ: $W = 9.32 \cdot 10^{13} \text{ M} \cdot \text{B/c}.$

Примеры заданий третьего блока

Пример №1

В металлическом баке высотой H=1.5 м и радиусом R=0.3 м находятся жидкие радиоактивные отходы. Бак установлен вертикально на теплоизолированной платформе. Бак охлаждается путем естественной конвекции окружающего его воздуха при атмосферном давлении и температуре $T_0=300~\mathrm{K}$. Найти максимальное тепловыделение Q_{max} при котором жидкость в баке не закипит. Считать бак изотермическим, а температуру кипения $\mathrm{PAO}-370~\mathrm{K}$. Для определения теплофизических свойств (помимо указанных в пояснении) считать воздух идеальным газом. Теплообменом излучением пренебречь.

Пояснения: коэффициент теплоотдачи в режиме естественной конвекции принято определять по формуле:

$$Nu = C \cdot Ra^n$$
,

где число Нуссельта Nu = $\alpha \cdot d/\lambda$; $\alpha \cdot$ - коэффициент теплоотдачи; число Рэлея Ra = $g \cdot \beta \cdot (T_c - T_0) \cdot d^3/(v \cdot a)$; T_c – температура поверхности бака, $a = \lambda/(c_p \cdot \rho)$ –коэффициент температуропроводности воздуха, β – коэффициент объемного расширения воздуха, c_p - теплоемкость воздуха.

При расчете по данной формуле все теплофизические свойства необходимо брать при средней температуре воздуха $T_{\rm cp} = 0.5 \cdot (T_0 + T_{\rm c})$. В качестве характерного размера d в числах Нуссельта и Рэлея используются для боковой поверхности высота H, а для торцевой - d = R/2.

Коэффициент C и показатель степени n зависят от числа Рэлея и равны:

C = 0.54 и n = 1/4 при $2 \cdot 10^7 > \text{Ra} > 500$,

C = 0.135 и n = 1/3, при $Ra \ge 2.10^7$.

<u>Пример проекта применение расчётных технологий при проектировании</u> термоэмиссионных космических ядерно-энергетических установок (КЯЭУ).

Цель проекта – обоснования проектных решений термоэмиссионных КЯЭУ нового поколения.

Задача проекта – проведение численного расчета в пакете программ «ЛОГОС» выходных тепловых характеристик многоэлементного термоэмиссионного электрогенерирующий канал (ЭГК) в трехмерной геометрии с использованием экспериментальных данных о вольтамперных характеристиках (ВАХ) термоэмиссионных преобразователей (ТЭП) в широком диапазоне изменения параметров рабочего процесса.

В задаче учитывается сложная геометрическая структура ЭГК, характеризующаяся большим набором тепловых сред разной теплопроводности, сложной формой электродных оболочек, коммутационных перемычек и других конструкционных элементов. Основным функциональным элементом термоэмиссионного реактора-преобразователя является ЭГЭ. Наиболее широкое практическое применение получили ЭГЭ цилиндрической геометрии. Сборка последовательно соединенных ЭГЭ, заключенных в общий корпус (чехол), омываемый теплоносителем, получила название ЭГК. В свою очередь, каждый ЭГЭ состоит из собственно ТЭП и коммутационной перемычки, соединяющей его с соседним ТЭП. ТЭП состоит из двух тонких коаксиально расположенных цилиндрических

электродов, разделенных МЭЗ, который в рабочем состоянии заполнен парами цезия при давлении несколько мм рт. ст. Внутренний электрод (эмиттер) поддерживается при температуре 1500-1900 К, источником тепла служит заключенный внутри него тепловыделяющий сердечник из ядерного топлива.

Принципиальная схема цилиндрического ЭГЭ представлена на рисунке 1.

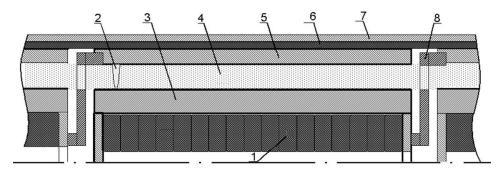


Рисунок 1 - Конструктивная схема многоэлементного ЭГК:1 — топливные таблетки; 2 — дистанционатор; 3 — эмиттер; 4 — МЭЗ; 5 — коллектор; 6 — изоляция (керамика); 7 — чехол; 8 — межэлектродная коммутационная перемычка

Пространственное распределение температуры в моделируемом устройстве описывается двумерным осесимметричным нестационарным уравнением энергии в цилиндрических координатах. Учитывается действие теплового излучения и электронного охлаждения на теплообмен.