Всероссийская олимпиада студентов «Я – профессионал»

задания заключительного (очного) теоретического этапа по направлению

«Безопасность информационных систем и технологий критически важных объектов»

Категория участия: «Бакалавриат» (для поступающих в магистратуру)

Вариант № 1

Номер задания	Задание	Макс. кол-во баллов
	Раздел 1. «Основы информационной безопасности»	
1.	Задан алгоритм шифрования $C_i \equiv (3M_i + 8) \mod 26$ сообщений на английском языке, где M_i — численное представление i -ой буквы исходного английского текста (A - 0, B - 1, C - 2, D - 3,, Z - 25), C_i — численное представление i -ой буквы шифртекста. Вычислить алгоритм расшифрования $M_i \equiv (xC_i + y) \mod 26$, где $x, y \in \{0, 1,, 25\}$. В ответе записать ключ расшифрования — пару (x, y) . (Значения вводятся через запятую). Ответ: 9, 6. $C_i \equiv (3M_i + 8) \mod 26 \leftrightarrow 3M_i \equiv (C_i - 8) \mod 26 \leftrightarrow 3M_i \equiv (C_i + 18) \mod 26 \leftrightarrow 4M_i \equiv (3^{-1}C_i + 6) \mod 26 \leftrightarrow 4M_i \equiv (9C_i + 6) \mod 26$	2
2.	Заданы три четырехразрядных регистра сдвига с линейными обратными связями (РСЛОС), уравнения работы которых имеют вид: $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4

	Ответ: А. Только РСЛОС 2 и 3 имеют диаграмму переключений, состоящую из двух кодов колец длиной 15 и 1.	
3.	Какой одной командой можно заменить фрагмент кода на Ассемблере (система команд x86, стандартная нотация Intel): mov ax, OFFSET RetAddr push ax jmp MyProc RetAddr: Other: call MyProc.	5
4.	 А. В качественной криптографической хеш-функции не должно быть коллизий. Б. В случае использования качественной криптографической хешфункции минимальное изменение на ее входе должно приводить в среднем к изменению 50% бит хеш-образа. В. В случае использования качественной криптографической хешфункции любое изменение на ее входе должно приводить в среднем к изменению 50% бит хеш-образа. Г. При использовании качественной криптографической хешфункции задача нахождения коллизий вычислительно неразрешима. В ответе указать все правильные варианты ответа. Ответ: А. 	4
	Раздел 2. «Криптографические методы защиты информации»	
5.	Определите количество слабых ключей в алгоритме шифрования «Магма» (ГОСТ Р 34.12-2015).	5
6.	Известно, что после шифрования сообщений "11" и "9" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "7" и "16". Чему равен результат зашифрования на том же ключе сообщения "99"?	5
7.	Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 6: 100000100001. Определите закон рекурсии.	5
	Решение	

	МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»	
	ЭКЗАМЕНАЦИОННЫЙ ЛИСТ	
	Дисциплина Дата экзамена	
	Фамилия студента № группы	
	№ экзаменационного билета Время выдачи билета ч	
	Время начала ответа ч мин. Оценка	
	подпись экзаменатора	
	5 ax and fraget. Bajuare v 1.	
	3 K- 456 OUT.	
	to the total to the total	
	K = (K1, K2, K3, K5, K5, K5, K5, K5)	
	$9_1 = k_1$ $9_2 = k_1$ $9_{10} = k_1$ $9_{15} = k_2$ $9_4 = k_2$ $9_{10} = k_2$ $9_{10} = k_2$ $9_{10} = k_2$	
	92 = 42 90 = 42 718 - 42 926 = 47	
	96 = 63 96 = 63 919 = 63 902 = 60	
	94 = 44 912 - 44 92 = 45 95 = 45 912 - 44 92 = 45	
	95 = 45 94 = 45 9m = 44	
	96 = 46 94 = 46 94 = 46	
	9x = ky $9x = ky$	
	90 = 48	
	Knox k- exerti => k, = kx = kx = kx = kx = kq. Kommerlo constat emores: 2.	
	$\begin{array}{ccc} & \mathcal{E}(11) = 7 \\ & \mathcal{E}(9) = 16 \end{array}$	
	E (11.9) = 7.16 = 112.	
	2 f over resemble to Es A	
	(3) To the state of the state o	
	(+) No anoparay squeesune - many organis	
	To anopoing Seprentence - meets organisms growth pergence. Fire = x: @ x: 1	
	Раздел 3. «Безопасность информационных технологий и техническая защита информации»	
	Найдите уязвимость в программном коде и дайте ей объяснение. BOOL WINAPI _exportSEVENZ_OpenArchive(constchar *Name, int *Type) {	
	Traverser *t = new Traverser(Name);	
	if (!t->Valid())	
8.	{	
	return FALSE;	
	delete t;	
	delete s_selected_traverser;	
	s_selected_traverser = t;	

	return TRUE;	
	Решение В приведенном примере происходит утечка данных из памяти.	
	return FALSE; delete t;	
	Для устранения ошибки необходимо поменять местами вызов операторов «return» и «delete».	
	Ответ: Возможна утечка из памяти. Для устранения ошибки необходимо поменять местами вызов операторов «return» и «delete».	
	В ходе проведения лабораторных измерений в низкочастотном акустоэлектрическом канале утечки информации (КУИ) без воздействия на техническое средство тональным акустическим сигналом напряжение шума на выходных контактах технического средства (приемника) в полосе пропускания анализатора спектра $\Delta F = 6 \Gamma \mu$ составляет $U \mu = 12 \mu$ мкВ. Необходимо: рассчитать напряжение шума в октавной полосе $U \mu$ окт шириной ΔF окт $\mu = 1,2 \mu$ гг. Предполагается, что спектральная плотность мощности шума является равномерной.	
9.	Решение. Напряжение шума в октавной полосе рассчитывается следующим образом: $Uu.o\kappa m_i = Uu_{np} \cdot \sqrt{\frac{\Delta Fo\kappa m_i}{\Delta Fnp}},$ тогда $\Delta Fo\kappa T/\Delta F = (\frac{Uu.o\kappa m}{Uu})^2$; $Uu.o\kappa m = Uu.\sqrt{\frac{\Delta Fo\kappa m}{\Delta F}} = 12 \cdot 10^{-6} \cdot \sqrt{\frac{1200}{6}} = 0,0001697 \text{ B} = 169,7 \text{ мкB.}$ Ответ: Напряжение шума в октавной полосе $Uu.o\kappa m = 169,7 \text{ мкB.}$	6
10.	Проводник телефонного канала связи способен равномерно пропускать колебания в интервале от 0 до 30 кГц. Известно то, что: на более высоких частотах коэффициент передачи канала (по мощности) не изменяется и равен нулю; в качестве защиты телефонного канала применено средство (активной) защиты информации - генератор белого шума (гауссовский). В результате применения генератора шума в канале связи присутствует белый шум. Отношение ($\frac{P_c}{P_{uu}}$) средней мощности полезного сигнала к средней мощности шума в канале связи составило 40 дБ. <i>Необходимо:</i> вычислить пропускную способность С канала связи. <i>Подсказки:</i> 1) Пропускная способность канала связи определяется по формуле (16.72) из учебника Баскакова С.И. РТЦиС, 1983: $C = \frac{\log_2 M}{T} = \Pi \cdot \log_2 \left(1 + \frac{P_c}{P_{uu}}\right).$ 2) Это тот случай (условие задачи), когда мощность сигнала в разы превышает мощность шума.	8
	Решение. "Белый" шум – это шум с постоянной спектральной плотностью в	

речевом диапазоне частот. Так как пропускная определяется по формуле (16.72, учебник Баскакова С.И. РТЦиС, 1983), то: для расчета $C = \frac{log_2\dot{M}}{T} = \Pi \cdot log_2 \ (1 + \frac{P_c}{P_{III}})$ необходимо найти все величины. 1) из условия задачи в частотной области ширина полосы пропускания П равна 3·10⁴ Гц; 2) для удобства вычисления выполним необходимое преобразование, выражение в скобках выразим через X, тогда $\log_2 x = \frac{\lg x}{\lg 2} = \frac{1}{\lg 2} \cdot \lg x =$ $3,32 \cdot \lg x$ (данный пункт упрощает решение, но он не обязателен); 3) выполним перевод дБ в разы: так как 40 дБ это отношение средней мощности полезного сигнала к средней мощности шума канале связи \Rightarrow 40 дБ = $\frac{P_1}{P_0}$, а $\frac{P_1}{P_0} = \sqrt[10]{10^{\text{dB}}} = 10^{\frac{dB}{10}} = 10^4$, где dB по условию 40 дБ. Следовательно С = $\Pi \cdot log_2 (1 + \frac{P_c}{P_{III}}) = 3 \cdot 10^4 \cdot 3,32 \cdot lg(1+10^4) \approx 398,4$ Кбит/с. Ответ: $C \approx 398,4 \, \text{Кбит/с}.$

Вариант № 2

Номер задания	Задание	Макс. кол-во баллов
	Раздел 1. «Основы информационной безопасности»	
1.	Задан алгоритм шифрования $C_i \equiv (2M_i + 5) \mod 26$ сообщений на английском языке, где M_i — численное представление i -ой буквы исходного английского текста (A - 0, B - 1, C - 2, D - 3,, Z - 25), C_i - численное представление i -ой буквы шифртекста. Вычислить алгоритм расшифрования $M_i \equiv (xC_i + y) \mod 26$, где $x, y \in \{0, 1,, 25\}$. В ответе записать ключ расшифрования — пару (x, y) . (Значения вводятся через запятую).	2
	Ответ: Ø. $C_i \equiv (2M_i + 5) \mod 26 \leftrightarrow 2M_i \equiv (C_i - 5) \mod 26 \leftrightarrow 2M_i \equiv (C_i + 21) \mod 26 \leftrightarrow 40 \leftrightarrow 40 \leftrightarrow 40 \rightarrow 40 \rightarrow 40 \rightarrow 40 \rightarrow 40 \rightarrow 40$	
2.	Задан четырехразрядный регистра сдвига с линейными обратными связями (РСЛОС), уравнения работы которого имеет вид: $q_1(t+1) = q_4(t) \\ q_2(t+1) = q_1(t) \\ q_3(t+1) = q_2(t) \\ q_4(t+1) = q_3(t) + q_4(t)$ где $q_i(t+1)$ и $q_i(t)$ — содержимое i -го разряда РСЛОС, а сложение выполняется по модулю два. Синтезировать на основе заданного РСЛОС устройство, диаграмма переключений которого состоит из одного кодового кольца длиной 16, включающего в себя все состояния устройства. В ответе привести уравнения работы синтезированного устройства.	5

		Ответ:	
разіст 1) = q²(t) q₄(t+1) − q₂(t) + q₄(t) + q₁(t) + q₂(t) + q₄(t) На чем основана стойкость криптосистем с открытым ключом? А. На секретности ключа зашифрования. Б. На сспожности решения некой математической задачи. Г. На секретности алгоритма расшифрования. В. На сложности решения некой математической задачи. Г. На секретности алгоритма зашифрования. Задача защиты программ от статического и динамического исследования решается путем использования технологии "изопиренного" программирования, предполагающей экзотическую, имсющую пеобычный вид реализацию апторитмов с использованием редких команд процессора или их нестандартных сочетаний; реализацию нескольких полностью эквивалентных вариантов одного и того же алгоритма, при каждом обращении к которому случайным образом выбирается один из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bx. Размер эквивалентного кода не ограничивается. Ответ: ризh ах хог ах, bх ризh сх ризh разработать и менее трех эквивалентных очетаний, реализаций команды хсhg ах,bx. Размер эквивалентного кода не ограничивается. 5 Ответ: ризh ах хог ах, bх ризh сх рор сх Раздел 2. «Кринтографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью огаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок липсйной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.		$q_1(t+1) = q_4(t)$	
На чем основана стойкость криптосистем с открытым ключом? А. На секретности ключа зашифрования. В. На секретности ключа зашифрования. В. На сокретности алгоритма расшифрования. В. На сокретности алгоритма расшифрования. В. На сокретности алгоритма расшифрования. Задача защиты программ от статического и динамического исследования решается путем использования технологии "изопіренного" программірования, предполагающей экзотическую, имеющую песобачный вид реализацию алгоритмов с использованием редких команд процессора или их нестандартных сочетаний; реализацию пескольких полностью эквивалентных вариантов одного и того же апторитма, при каждом обращении к которому случайным образом выбирается один из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bx. Размер эквивалентных реализаций команды хсhg ах,bx. Размер эквивалентного кода не ограничивается. 5 Ответ: ризh ах хог ах, bх ризh сх рорь сх Раздся 2. «Кринтографические методы защиты информации» 5 Определите количество слабых ключей в алгоритме шифрования рызм хог ах, ах рор сх Раздся 2. «Кринтографические методы защиты информации» 5 Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии. 5		1 () 1 ()	
На чем оспована стойкость криптосистем с открытым ключом? А. На секретности ключа запифрования. Б. На секретности алгоритма расшифрования. В. На сложности решения некой математической задачи. Г. На секретности алгоритма запифрования. В ответе указать все правильные варианты ответа. Ответ: В. Задача запиты программ от статического и динамического исследования решастся путем использования технологии "изощренного" программирования, предполагающей экзотическую, именопую необычный вид реализацию алгоритмов с использованием редких команд процессора или их нестандартных сочетаний; реализацию нескольких полностью эквивалентных вариантов одного и того же апторитма, при каждом обращении к которому случайным образом выбирастея один из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bx. Размер эквивалентного кода не ограничивается. Ответ: ризh ах хог ах, bх ризh сх ризh сх ризh bх хог bх, ах тоу ах, bх тоу ах, сх рор сх Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме пифрования рЕS. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.		$q_3(t+1) = q_2(t)$	
А. На секретности ключа защифрования. Б. На секретности алгоритма расшифрования. В. На сложности решения некой математической задачи. Г. На секретности алгоритма защифрования. В ответе указать все правильные варианты ответа. Ответ: В. Задача защиты программ от статического и динамического исследования решается путем использования технологии "изощренного" программирования, предполагающей экзотическую, имсющую псобычный вид реализацию алгоритмов с использованием редких команд пропессора или их пестаплартных сочетаний; реализацию нескольких полностью эквивалентных вариантов образом выбирается одии из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bx. Размер эквивалентного кода не ограничивается. Ответ: ризh ах хог ах, bх ризh сх реализаций и др. Ответ: ризh ах хог ах, bх ризh сх рор ах хог ах, bх тох ах тох ах, bх тох ах тох ах, bх тох ах		$q_4(t+1) = q_3(t) + q_4(t) + q_1(t) \cdot q_2(t) \cdot q_4(t)$	
Ответ: В. Задача защиты программ от статического и динамического исследования решается путем использования технологии "изощренного" программирования, предполагающей экзотическую, имеющую необычный вид реализацию алгоритмов с использованием редких команд процессора или их пестапдартных сочетапий; реализацию нескольких полностью эквивалентных вариантов одного и того же алгоритма, при каждом обращении к которому случайным образом выбирается один из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bх. Размер эквивалентного кода не ограничивается. 4. Ответ: ризh ах хог ах, bх ризh сх ризh bx хог bx, ах тох ах, bx тох bx, сх рор сх Раздел 2. «Кринтографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно пифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.	3.	A. На секретности ключа зашифрования.Б. На секретности алгоритма расшифрования.В. На сложности решения некой математической задачи.	3
исследования решается путем использования технологии "изощренного" программирования, предполагающей экзотическую, имеющую необычный вид реализацию алгоритмов с использованием редких команд процессора или их нестандартных сочетаний; реализацию нескольких полностью эквивалентных вариантов одного и того же алгоритма, при каждом обращении к которому случайным образом выбирается один из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bх. Размер эквивалентного кода не ограничивается. Ответ: ризh ах хог ах, bх ризh сх рузh bx хог bx, ах тоу сх, ах тоу bx, ах тоу bx, сх т			
ризh ах хог ах, bх ризh сх ризh bх хог bх, ах точ сх, ах рор ах хог ах, bх точ ах, bх точ ах, bх точ bх, сх рор сх Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.	4.	исследования решается путем использования технологии "изощренного" программирования, предполагающей экзотическую, имеющую необычный вид реализацию алгоритмов с использованием редких команд процессора или их нестандартных сочетаний; реализацию нескольких полностью эквивалентных вариантов одного и того же алгоритма, при каждом обращении к которому случайным образом выбирается один из вариантов его реализации и др. Используя эту технологию, разработать не менее трех эквивалентных реализаций команды хсhg ах,bх. Размер эквивалентного кода не	5
ризh bx хог bx, ах моv сx, ах рор ах хог ах, bx моv ах, bx моv bx, сх рор сх Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.		Ответ:	
рор ах хог ах, bх моч ах, bх рор bх моч bх, сх рор сх Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.		push ax xor ax, bx push cx	
рор ах хог ах, bх моч ах, bх рор bх моч bх, сх рор сх Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.		push bx xor bx, ax mov cx, ax	
рор bx — моу bx, cx — рор cx Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.		-	
Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. 5 Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? 7. Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.			
Раздел 2. «Криптографические методы защиты информации» 5. Определите количество слабых ключей в алгоритме шифрования DES. 5 Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? 7. Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.			
5. Определите количество слабых ключей в алгоритме шифрования DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.			
 5. DES. Известно, что после шифрования сообщений "7" и "15" с помощью алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии. 			
6. алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.	5.		5
7. линейная сложность которой равна 5: 0111110001. Определите закон рекурсии.	6.	алгоритма RSA с одинаковым ключом и 8-битным модулем были получены соответственно шифртексты "11" и "19". Чему равен остаток от деления на 128 результата зашифрования на том же ключе	
Решение			
1 VIIIVIIIIV	7.	сообщения "105"? Известен отрезок линейной рекуррентной последовательности, линейная сложность которой равна 5: 0111110001. Определите закон	5

	министерство науки и высшего образов федеральное государственное авто учреждение высшего о национальный исследовательский яд	номное образовательное образования ДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»	
		To the second se	
	Дисциплина Дата	экзамена	
	Фамилия студента	№ группы	
	№ экзаменационного билета Время	выдачи билета ч ми	
	время начала ответа ч мин. Оценка	à	
	Подпись экзаменатора		
	5 acarabpear Bapea 47 N 2		
	2-36 200	Eur]	
	Renor constant, (28 out) Renu ferresper Lo 28 out Lo 28 out Lo 2000 out out out	28 sur >>	
		ayugobor anoz	
	E(7) = 11 $E(15) = 19$		
	E(7.15) = 11.19 = 209 b cury cooleyworter	E RSA.	
	209 modles = 101		
	(u7) to assoping befreedung		
	Zuco4 pengpoun: Ki+5 = Ki €	Citl.	
		e f	
	Раздел 3. «Безопасность информацион техническая защита инфор		
	Haйдите уязвимость в программном коде и void host_lookup(char *user_supplied_addr)	і дайте ей объяснение.	
	<pre>struct hostent *hp; in addr t *addr;</pre>		
_	char hostname[64];		
8.	in_addr_t inet_addr(const char *cp);		6
	/*routine that ensures user_supplied_addr is in the	he right format for	
	conversion */ validate_addr_form(user_supplied		
	addr = inet_addr(user_supplied_addr);		
	hp = gethostbyaddr(addr, sizeof(struct in_addr),	AF INFT):	
	strcpy(hostname, hp->h name);	, M _IIVL1),	
	Tourpy (nobiname, np - n_name),		

	Решение В приведенном примере происходит выделение буфера под хранение переменной «hostname» размером 64 байт. В случае, если значение переменной «hostname» будет более 64 байт, произойдет переполнение буфера. Ответ: Возможно переполнение буфера. В случае, если значение переменной «hostname» будет более 64 байт произойдет переполнение буфера. При оценке защищенности речевой информации в помещении получены следующие результаты: Звуковое давление тестового акустического сигнала, измеренное микрофоном №1, составляет L _{TC} =99дБ. Звуковое давление сигнала и шума, измеренное микрофоном №2, составляет	
9.	 L_{C+Ш} = 59дБ. При отключении тестового акустического сигнала звуковое давление шума, измеренное микрофоном №2, составляет L_Ш = 39дБ. <i>Необходимо</i>: рассчитать звукоизоляцию Q ограждающей конструкции. Решение Вычисляем звуковое давление сигнала за ограждающей конструкцией Если L_C+ш - L_Ш > 10дБ, то L_C = L_C+ш . Таким образом L_C = 59дБ. Звукоизоляция Q - это разница между тестовым сигналом и сигналом за пределами ограждающей конструкции Таким образом Q = L_{TC} - L_C = 99-59 = 40дБ. 	6
10.	Ответ: Q = 40 дБ. Проводник телефонного канала связи способен равномерно пропускать колебания в интервале от 0 до 30 кГц. Известно то, что: на более высоких частотах коэффициент передачи канала (по мощности) не изменяется и равен нулю; в качестве защиты телефонного канала применено средство (активной) защиты информации − генератор белого шума (гауссовский). В результате применения генератора шума в канале связи присутствует белый шум. Отношение (Pc / PP	8

мощность шума равны.

Решение

"Белый" шум — это шум с постоянной спектральной плотностью в речевом диапазоне частот. Так как пропускная способность определяется по формуле (16.72, учебник Баскакова С.И. РТЦ и C, 1983), то:для расчета

 $C = \frac{log_2M}{T} = \Pi \cdot log_2 \left(1 + \frac{P_c}{P_{III}}\right)$ необходимо найти все величины.

- 1) из условия задачи в частотной области ширина полосы пропускания Π равна $3\cdot 10^4~\Gamma_{\Pi};$
- 2) для удобства вычисления выполним необходимое преобразование выражение в скобках выразим через X, тогда $log_2x = \frac{lgx}{lg2} = \frac{1}{lg2}$ · $lgx = 3,32 \cdot lgx$ (данный пункт упрощает решение, но он не обязателен);
- 3) выполним перевод дБ в разы: так как 1 дБ это отношение средней мощности полезного сигнала к средней мощности шума канале =>

$$1 \text{ дБ} = \frac{P_1}{P_0}$$
, а $\frac{P_1}{P_0} = \sqrt[10]{10^{\text{dB}}} = 10^{\frac{dB}{10}} = 10^{0,1} = 1$, где dB по условию 1 дБ.

Следовательно С = $\Pi \cdot log_2 (1 + \frac{P_c}{P_{III}}) = 3 \cdot 10^4 \cdot 3,32 \cdot lg(1 + 10^{0,1}) = 3 \cdot 10^4 \cdot 3,32 \cdot 1 \approx 35,2 \ \text{Кбит/c}.$

Ответ: $C \approx 35,2$ Кбит/с (значение для линии связи низкого качества).