
AppMetrica

AppMetrica

10.06.2024

AppMetrica. AppMetrica. Version 1.0

Document build date: 10.06.2024

This volume is a part of Yandex technical documentation.

© 2008—2024 Yandex LLC. All rights reserved.

Copyright Disclaimer
Yandex (and its applicable licensor) has exclusive rights for all results of intellectual activity and equated to them means of individualization, used for
development, support, and usage of the service AppMetrica. It may include, but not limited to, computer programs (software), databases, images,
texts, other works and inventions, utility models, trademarks, service marks, and commercial denominations. The copyright is protected under
provision of Part 4 of the Russian Civil Code and international laws.

You may use AppMetrica or its components only within credentials granted by the Terms of Use of AppMetrica or within an appropriate Agreement.

Any infringements of exclusive rights of the copyright owner are punishable under civil, administrative or criminal Russian laws.

Contact information
Yandex LLC

https://www.yandex.com

Тел.: +7 495 739 7000

Email: pr@yandex-team.ru

16 L'va Tolstogo St., Moscow, Russia 119021

https://www.yandex.com

Contents

Push SDK integration... 4
..4
Android... 4

Installation and initialization.. 4
Configuring your app...8
Using with other push services...10
Reference.. 12
Migrating from GCM to Firebase.. 20
Changelog..21

iOS..24
Installation and initialization.. 24
Objective-C reference..31
Swift reference...37
Configuring interaction tracking...43
Uploading attached files..44
Configuring your app...46
Changelog..47

Windows... 48
Installation and initialization.. 48
Configuring your app...49
Changelog..50

Plugins.. 50
Unity...50
Flutter...55
Cordova (not supported)... 56

AppMetrica Push SDK 4

AppMetrica Push SDK

The AppMetrica Push SDK is a set of libraries for working with push notifications. After enabling the AppMetrica
Push SDK, you can create and configure push notification campaigns, then monitor statistics in the AppMetrica
web interface.

The SDK is available for the following platforms:

• Android (starting from version 5).
• iOS and iPadOS (starting from version 9).
• Windows (Development is on hold. We do not guarantee the SDK will work correctly.).

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Android

Connecting the AppMetrica Push SDK

The Push SDK for Android is a library in the AAR format. The library is available in the Maven repository.

This section describes the steps to enable and initialize AppMetrica Push SDK:

Step 1. Prepare your app

Before integrating the AppMetrica Push SDK library, prepare your app:

1. Integrate the AppMetrica SDK library at least version 3.0.0.
2. Configure your app for sending push notifications.

Step 2. Enable the library

Since version 1.4.0 to the Push SDK added the OKHttp library. The SDK uses it for caching images that are
displayed in push notifications. Caching rules are taken from the cache-control HTTP header. If you do not
want the images to be cached, connect the library without caching.

1. In the build.gradle file add the following dependencies in the dependencies block:
With caching

dependencies {
 ...
 implementation "com.yandex.android:mobmetricapushlib:2.3.2"
 implementation "androidx.legacy:legacy-support-v4:1.0.0"
 ...
}

Without caching

dependencies {
 ...
 implementation ("com.yandex.android:mobmetricapushlib:2.3.2") {
 exclude group: 'com.squareup.okhttp3', module: 'okhttp'
 }
 implementation "androidx.legacy:legacy-support-v4:1.0.0"
 ...
}}

AppMetrica. AppMetrica

https://search.maven.org/search?q=g:com.yandex.android%20AND%20a:mobmetricapushlib
https://github.com/square/okhttp

AppMetrica Push SDK 5

2. Connect the transport.

Firebase

a. In the build.gradle file, add Firebase dependencies in the dependencies block:

dependencies {
 ...
 // minimum support version 20.3.0
 implementation "com.google.firebase:firebase-messaging:22.0.0"
 implementation "com.google.android.gms:play-services-base:17.5.0"
 ...
}

b. Initialize Firebase using one of the following methods:

Using Google Services Plugin

1. Download the configuration file google-services.json and put it in the project module's directory (such as app).
2. In order to work with the file correctly, enable the Google Services plugin in the project by adding the following lines to

the build.gradle file:

project

buildscript{
 ...
 dependencies {
 ...
 classpath 'com.google.gms:google-services:4.3.4'
 ...
 }
 ...
}

application (module)

// In the end of the file.
apply plugin: 'com.google.gms.google-services'

Without using the plugin

Make changes in the application element in the AndroidManifest.xml file:

<meta-data android:name="ymp_firebase_default_app_id" android:value="APP_ID"/>
<meta-data android:name="ymp_gcm_default_sender_id" android:value="number:SENDER_ID"/>
<meta-data android:name="ymp_firebase_default_api_key" android:value="API_KEY"/>
<meta-data android:name="ymp_firebase_default_project_id" android:value="PROJECT_ID"/>

APP_ID — ID of the app in Firebase. You can find it in the Firebase console: go to the Project settings. In the Your
application section copy the value of the application ID field.

SENDER_ID — The unique ID of the sender in Firebase. You can find it in the Firebase console: go to Project settings →
Cloud Messaging and copy the value of the Sender ID field.

API_KEY — App key in Firebase. You can find it in the current_key field of the google-services.json file. You can
download the file in the Firebase console.

PROJECT_ID — App ID in Firebase. You can find it in the project_id field of the google-services.json file. You can
download the file in the Firebase console.

Using with other Firebase projects

Make changes in the application element in the AndroidManifest.xml file:

<meta-data android:name="ymp_firebase_app_id" android:value="APP_ID"/>
<meta-data android:name="ymp_gcm_sender_id" android:value="number:SENDER_ID"/>
<meta-data android:name="ymp_firebase_api_key" android:value="API_KEY"/>

AppMetrica. AppMetrica

https://support.google.com/firebase/answer/7015592
https://console.firebase.google.com/
https://console.firebase.google.com/
https://support.google.com/firebase/answer/7015592
https://console.firebase.google.com/

AppMetrica Push SDK 6

<meta-data android:name="ymp_firebase_project_id" android:value="PROJECT_ID"/>

APP_ID — ID of the app in Firebase. You can find it in the Firebase console: go to the Project settings. In the Your
application section copy the value of the application ID field.

SENDER_ID — The unique ID of the sender in Firebase. You can find it in the Firebase console: go to Project settings →
Cloud Messaging and copy the value of the Sender ID field.

API_KEY — App key in Firebase. You can find it in the current_key field of the google-services.json file. You can
download the file in the Firebase console.

PROJECT_ID — App ID in Firebase. You can find it in the project_id field of the google-services.json file. You can
download the file in the Firebase console.

Attention: You should initialize default Firebase project.

HMS

a. Add HMS Push Kit to the project.
b. In the build.gradle file add the following dependencies in the dependencies block:

dependencies {
 ...
 implementation "com.yandex.android:appmetricapush-provider-hms:2.3.2"
 ...
}

Attention: If you're only going to use HMS, exclude the Firebase dependency from the main library:

dependencies {
 ...
 implementation ("com.yandex.android:mobmetricapushlib:2.3.2") {
 exclude group: 'com.yandex.android', module: 'appmetricapush-provider-firebase'
 }
 ...
}

c. Make changes in the application element in the AndroidManifest.xml file:

<meta-data android:name="ymp_hms_default_app_id" android:value="number:APP_ID"/>

APP_ID — App ID in HMS. You can find it in the app_id field of the agconnect-services.json file. You can
download the file in theHuawei console.

The AppMetrica Push SDK can simultaneously work with Firebase and HMS.

Step 3. Initialize the library

Initialize the library in the app — extend the Application class and override the onCreate() method as
follows:

Firebase only
Java

public class MyApp extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 YandexMetricaPush.init(getApplicationContext());
 }
}

Kotlin

class MyApp : Application() {
 override fun onCreate() {
 super.onCreate()
 YandexMetricaPush.init(applicationContext)
 }
}

HMS only
Java

public class MyApp extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 YandexMetricaPush.init(getApplicationContext(), new HmsPushServiceControllerProvider(this));

AppMetrica. AppMetrica

https://console.firebase.google.com/
https://console.firebase.google.com/
https://support.google.com/firebase/answer/7015592
https://console.firebase.google.com/
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-app-quickstart-0000001071490422
https://developer.huawei.com/consumer/ru/service/josp/agc/index.html

AppMetrica Push SDK 7

 }
}

Kotlin

class MyApp : Application() {
 override fun onCreate() {
 super.onCreate()
 YandexMetricaPush.init(applicationContext, HmsPushServiceControllerProvider(this))
 }
}

Firebase and HMS
Java

public class MyApp extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 YandexMetricaPush.init(
 getApplicationContext(),
 new FirebasePushServiceControllerProvider(this),
 new HmsPushServiceControllerProvider(this)
);
 }
}

Kotlin

class MyApp : Application() {
 override fun onCreate() {
 super.onCreate()
 YandexMetricaPush.init(
 applicationContext,
 FirebasePushServiceControllerProvider(this),
 HmsPushServiceControllerProvider(this)
)
 }
}

Attention: The AppMetrica Push SDK library must be initialized in the main process.

Step 4. (Optional) Configure Silent Push Notifications

Configure processing silent push notifications.

1. Create a special BroadcastReceiver:

import com.yandex.metrica.push.YandexMetricaPush;
public class SilentPushReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 // Extract push message payload from your push message.
 String payload = intent.getStringExtra(YandexMetricaPush.EXTRA_PAYLOAD);
 ...
 }
}

2. Make changes in the application element in the AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application>
 ...
 <receiver android:name=".SilentPushReceiver">
 <intent-filter>
 <!-- Receive silent push notifications. -->
 <action android:name="${applicationId}.action.ymp.SILENT_PUSH_RECEIVE"/>
 </intent-filter>
 </receiver>
 ...
 </application>
</manifest>

applicationId — Unique app ID in Gradle (package name). For example, com.example.name.

Step 5. (Optional) Enable push tokens update

Attention:

AppMetrica. AppMetrica

AppMetrica Push SDK 8

If you have your own service to handle push notifications (a class inherited from
FirebaseMessagingService or HmsMessageService), check that you are not handling push
notifications from AppMetrica.

To check that the push notification is not from AppMetrica, use the
MetricaMessagingService.isNotificationRelatedToSDK or
MetricaHmsMessagingService.isNotificationRelatedToSDK method.

The FCM service can withdraw the push token of the device, for example, if the user did not launch the
application for a long time. AppMetrica stores push tokens on the server and can not send a push notification to a
device with an obsolete token.

To automatically collect current push token go to the application settings in the AppMetrica interface and enable
the Update tokens with a Silent Push notification option in the Push Notifications tab.

Sending additional information

You can send additional information with the push notification if necessary. This data is specified in the
AppMetrica web interface when configuring the push campaign.

public class TargetActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(saveInstanceState);
 handlePayload(getIntent());
 }

 @Override
 protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);
 handlePayload(intent);
 }

 private void handlePayload(Intent intent) {
 // Handle your payload.
 String payload = intent.getStringExtra(YandexMetricaPush.EXTRA_PAYLOAD);
 ...
 }
}

Detecting the application launch via push notification

To distinguish app launches initiated by opening an AppMetrica push notification from the total number
of app starts, you should check the Intent action of the app. If you specified a deeplink as the action,
this will be the Intent action. If the action is set as opening the app, the Intent action passes the value
YandexMetricaPush#OPEN_DEFAULT_ACTIVITY_ACTION.

Setting the default icon

To set the default push notification icon, make changes in the application element in the
AndroidManifest.xml file:

<meta-data android:name="com.yandex.metrica.push.default_notification_icon"
 android:resource="ICON_RESOURCE"/>

ICON_RESOURCE — Icon resource. For example, @drawable/large_icon.

See also
Configuring an Android application to send push notifications on page 8
How can I make sure that I have the latest versions of the Android libraries installed?

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Configuring an Android application to send push notifications

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Intent.html#getAction()

AppMetrica Push SDK 9

For using Firebase

Step 1. Create a project in Firebase

1. Go to the Firebase Console and choose an action:

Create a new project (if this is your first project)

a. Enter a name for the project.
b. Select the country your organization is officially registered in and click Create project.

Import a Google project (if you used Google APIs to create a project)

a. In the drop-down list, select the name of the project you are planning to run push campaigns for.
b. Select the country your organization is officially registered in and click Add Firebase.

2. Click Add Firebase to your Android app and follow the instructions.

Step 2. Configure AppMetrica to work with FCM

Get a server key for using Firebase Cloud Messaging:

1. In the Firebase Console, select the project you are planning to run push campaigns for.
2.

In the menu on the left, click next to the project name and go to the Project Settings section.
3. Go to the Cloud Messaging tab.
4. In the Cloud Messaging API block, select → Manage API in Google Cloud Console → Enable.
5. Go back to the Cloud Messaging tab.
6. In the Cloud Messaging API block, copy the value of the Server key field.

Use this key in the AppMetrica interface:

1. In the Applications section, select the app that you want to run push campaigns for.
2. In the menu on the left, select Settings.
3. Go to the Push notifications tab.
4. In the Android section, enter the value you copied from the Firebase Console in Server key and click

Submit.

To use Huawei Mobile Services (HMS)

Step 1. Create and configure a project in the Huawei console

Follow all the steps in the Huawei documentation.

Attention: Make sure that Configuring the Signing Certificate Fingerprint specifies SHA-256
certificate fingerprint for all app signatures, including the debug version. Otherwise, the device
can't receive push notifications.

Step 2. Configure AppMetrica to work with HMS

Get the app ID and app secret from the Huawei console:

1. In the list of projects in the Huawei console, select your project.
2. On the project page, copy the App ID and App secret field values.

Use these keys in the AppMetrica interface:

1. In the Applications section, select the app that you want to run push campaigns for.
2. In the menu on the left, select Settings.
3. Go to the Push notifications tab.
4. In the Huawei block, fill in the App ID and App secret fields with values from the Huawei console and click

Submit.

See also
Connecting the AppMetrica Push SDK on page 4

AppMetrica. AppMetrica

https://console.firebase.google.com/
https://appmetrica.yandex.com/application/list
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides-V5/android-config-agc-0000001050170137-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides-V5/android-config-agc-0000001050170137-V5#EN-US_TOPIC_0000001050170137__section1159841225116
https://developer.huawei.com/consumer/ru/service/josp/agc/index.html
https://developer.huawei.com/consumer/ru/service/josp/agc/index.html#/myProject
https://appmetrica.yandex.com/application/list

AppMetrica Push SDK 10

Launching a push campaign

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Using with other push services

You can use AppMetrica Push SDK and other push services at the same time. To do this, you need to create a
FCM or HMS service that will redirect messages between integrated SDKs.

Using with other Firebase push services
Step 1. Make changes in AndroidManifest.xml

Make changes in the application element in the AndroidManifest.xml file:

<service android:name=".FirebaseMessagingMasterService"
 android:enabled="true"
 android:exported="false">
 <intent-filter android:priority="100">
 <action android:name="com.google.firebase.MESSAGING_EVENT"/>
 </intent-filter>
</service>
<service android:name="com.yandex.metrica.push.firebase.MetricaMessagingService" tools:node="remove"/>

Step 2. Add push notifications handling

Declare the derived FirebaseMessagingMasterService class from the base
FirebaseMessagingService class for handling push notifications:

Java

public class FirebaseMessagingMasterService extends FirebaseMessagingService {
 @Override
 public void onMessageReceived(RemoteMessage message) {
 super.onMessageReceived(message);
 if (MetricaMessagingService.isNotificationRelatedToSDK(message) {
 new MetricaMessagingService().processPush(this, message);
 return;
 }

 // Implement the logic for sending messages to other SDKs or handle own pushes.
 }
}

Kotlin

class FirebaseMessagingMasterService : FirebaseMessagingService() {
 override fun onMessageReceived(message: RemoteMessage) {
 super.onMessageReceived(message)
 if (MetricaMessagingService.isNotificationRelatedToSDK(message) {
 MetricaMessagingService().processPush(this, message)
 return
 }

 // Implement the logic for sending messages to other SDKs or handle own pushes.
 }
}

Step 3. Add push token processing

Add push token processing to the FirebaseMessagingMasterService class code:

Java

public class FirebaseMessagingMasterService extends FirebaseMessagingService {
 ...

 @Override
 public void onNewToken(@NonNull String token) {
 super.onNewToken(token);
 new MetricaMessagingService().processToken(this, token);

 // Implement the logic for sending tokens to other SDKs.
 }
}

AppMetrica. AppMetrica

AppMetrica Push SDK 11

Kotlin

class FirebaseMessagingMasterService : FirebaseMessagingService() {
 ...

 override fun onNewToken(token: String) {
 super.onNewToken(token);
 MetricaMessagingService().processToken(this, token)

 // Implement the logic for sending tokens to other SDKs.
 }
}

Using with other HMS push services
Step 1. Make changes in AndroidManifest.xml

Make changes in the application element in the AndroidManifest.xml file:

<service
 android:name=".HmsMessagingMasterService"
 android:exported="true"
 android:permission="${applicationId}.permission.PROCESS_PUSH_MSG">
 <intent-filter android:priority="100">
 <action android:name="com.huawei.push.action.MESSAGING_EVENT" />
 </intent-filter>
</service>
<service android:name="com.yandex.appmetrica.push.hms.MetricaHmsMessagingService" tools:node="remove"/>

Step 2. Add push notifications handling

Declare the derived HmsMessagingMasterService class from the base HmsMessageService class for
handling push notifications:

Java

public class HmsMessagingMasterService extends HmsMessageService {
 @Override
 public void onMessageReceived(RemoteMessage message) {
 super.onMessageReceived(message);
 if (MetricaHmsMessagingService.isNotificationRelatedToSDK(message) {
 new MetricaHmsMessagingService().processPush(this, message);
 return;
 }

 // Implement the logic for sending messages to other SDKs or handle own pushes.
 }
}

Kotlin

class HmsMessagingMasterService : HmsMessageService() {
 override fun onMessageReceived(message: RemoteMessage) {
 super.onMessageReceived(message)
 if (MetricaHmsMessagingService.isNotificationRelatedToSDK(message) {
 MetricaHmsMessagingService().processPush(this, message)
 return
 }

 // Implement the logic for sending messages to other SDKs or handle own pushes.
 }
}

Step 3. Add push token processing

Add push token processing to the HmsMessagingMasterService class code:

Java

public class HmsMessagingMasterService extends HmsMessageService {
 ...

 @Override
 public void onNewToken(@Nullable String token) {
 super.onNewToken(token);
 new MetricaHmsMessagingService().processToken(this, token);

 // Implement the logic for sending tokens to other SDKs.
 }
}

Kotlin

class HmsMessagingMasterService : HmsMessageService() {

AppMetrica. AppMetrica

AppMetrica Push SDK 12

 ...

 override fun onNewToken(token: String?) {
 super.onNewToken(token);
 MetricaHmsMessagingService().processToken(this, token)

 // Implement the logic for sending tokens to other SDKs.
 }
}

See also
Connecting the AppMetrica Push SDK on page 4
Launching a push campaign

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Reference

com.yandex.metrica.push
Interfaces
TokenUpdateListener interface

com.yandex.metrica.push

public interface TokenUpdateListener

The interface defines callback methods when updating the token.

To subscribe to token updates, create an instance that implements the TokenUpdateListener interface and
pass it to the YandexMetricaPush.setTokenUpdateListener(TokenUpdateListener listener) method.

Methods

void onTokenUpdated(Map<String, String> tokens)

Called when the first token is received or updated.

Method descriptions

onTokenUpdated

void onTokenUpdated(Map<String, String> tokens)

Called when the first token is received or updated.

Parameters:

tokens List of tokens for push providers that the AppMetrica Push
SDK was initialized with. The keys can take the values
firebase and hms.

Classes
YandexMetricaPush class

com.yandex.metrica.push

public final class YandexMetricaPush

Methods of the class are used for configuring the Push SDK library.

AppMetrica. AppMetrica

AppMetrica Push SDK 13

Methods

void init(@NonNull final Context ctx)

Initializes the library in the app. Method should be invoked
after AppMetrica SDK initialization.

void init(@NonNull Context ctx, PushServiceControllerProvider...
providers)

Initializes the library in the app with a list of push transports.
Method should be invoked after AppMetrica SDK
initialization.

String getToken()

Attention: Deprecated method. Use the
getTokens() method instead.

Returns the push token.

Map<String, String> getTokens()

Returns a list of tokens for push providers that AppMetrica
Push SDK was initialized with. The keys can take the values
firebase and hms.

NotificationChannel getDefaultNotificationChannel()

Returns the push notification channel
NotificationChannel, which is used by default. You can
set settings for it using the methods NotificationChannel until
the first push notification is received.

void setTokenUpdateListener(@NonNull TokenUpdateListener
listener)

Subscribes to token updates.

Fields

String OPEN_DEFAULT_ACTIVITY_ACTION Intent action for execute the Activity by
default. It can be used to detect the app
start via AppMetrica push notification.

String EXTRA_PAYLOAD An arbitrary data string that is passed in
the push notification:

• In the Additional data field when
sending from the AppMetrica
interface.

• In the data field when sending
using the Push API.

Method descriptions

init

void init(@NonNull final Context ctx)

Initializes the library in the app. Method should be invoked after AppMetrica SDK initialization.

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/app/NotificationChannel
https://developer.android.com/reference/android/app/NotificationChannel
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html
https://appmetrica.yandex.ru/docs/mobile-api/push/about.html
https://developer.android.com/reference/android/content/Context

AppMetrica Push SDK 14

Parameters:

ctx The instance of the Context class.

init

void init(@NonNull Context ctx, PushServiceControllerProvider... providers)

Initializes the library in the app with a list of push transports. Method should be invoked after AppMetrica SDK
initialization.

Parameters:

ctx The instance of the Context class.

providers The instances of the
FirebasePushServiceControllerProvider and
HmsPushServiceControllerProvider classes.

Example
Java

YandexMetricaPush.init(
 getApplicationContext(),
 new FirebasePushServiceControllerProvider(this),
 new HmsPushServiceControllerProvider(this)
);

Kotlin

YandexMetricaPush.init(
 applicationContext,
 FirebasePushServiceControllerProvider(this),
 HmsPushServiceControllerProvider(this)
)

getToken
String getToken()

Attention: Deprecated method. Use the getTokens() method instead.

Returns the push token.

Returns:

The push token or null, if the token is not available yet.

getTokens
Map<String, String> getTokens()

Returns a list of tokens for push providers that AppMetrica Push SDK was initialized with. The keys can take the
values firebase and hms.

Returns:

List of tokens for push providers that AppMetrica Push SDK was initialized with.

getDefaultNotificationChannel
NotificationChannel getDefaultNotificationChannel()

Returns the push notification channel NotificationChannel, which is used by default. You can set settings for
it using the methods NotificationChannel until the first push notification is received.

Returns:

The instance of NotificationChannel, which is used by default.

AppMetrica. AppMetrica

https://developer.android.com/reference/android/app/NotificationChannel
https://developer.android.com/reference/android/app/NotificationChannel

AppMetrica Push SDK 15

setTokenUpdateListener
void setTokenUpdateListener(@NonNull TokenUpdateListener listener)

Subscribes to token updates.

Parameters:

listener The instance of the TokenUpdateListener class. It's called
when the first token is received or updated.

Field descriptions

OPEN_DEFAULT_ACTIVITY_ACTION

public final String OPEN_DEFAULT_ACTIVITY_ACTION =
"com.yandex.metrica.push.action.OPEN"

Intent action for execute the Activity by default. It can be used to detect the app start via AppMetrica push
notification.

public class LaunchActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(saveInstanceState);
 Intent intent = getIntent();
 String action = intent.getAction();
 if (YandexMetricaPush.OPEN_DEFAULT_ACTIVITY_ACTION.equals(action)) {
 // Handle the app start via AppMetrica push notification.
 ...
 }
 }

}

EXTRA_PAYLOAD

public final String EXTRA_PAYLOAD = ".extra.payload"

An arbitrary data string that is passed in the push notification:

• In the Additional data field when sending from the AppMetrica interface.
• In the data field when sending using the Push API.

com.yandex.appmetrica.push.firebase
Classes
FirebasePushServiceControllerProvider class

com.yandex.appmetrica.push.firebase

public class FirebasePushServiceControllerProvider

A class that helps initialize AppMetrica Push SDK with Firebase.

Constructors

FirebasePushServiceControllerProvider(@NonNull Context ctx)

Constructor descriptions

FirebasePushServiceControllerProvider

public FirebasePushServiceControllerProvider(@NonNull Context ctx)

Parameters:

ctx The instance of the Context class.

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html
https://appmetrica.yandex.ru/docs/mobile-api/push/about.html

AppMetrica Push SDK 16

com.yandex.appmetrica.push.hms
Classes
HmsPushServiceControllerProvider class

com.yandex.appmetrica.push.hms

public class HmsPushServiceControllerProvider

A class that helps initialize the AppMetrica Push SDK with HMS.

Constructors

HmsPushServiceControllerProvider(@NonNull Context ctx)

Constructor descriptions

HmsPushServiceControllerProvider

public HmsPushServiceControllerProvider(@NonNull Context ctx)

Parameters:

ctx The instance of the Context class.

MetricaHmsMessagingService class

com.yandex.appmetrica.push.hms

public class MetricaHmsMessagingService

Methods of the class are used to configure simultaneous use of the AppMetrica Push SDK and another push
service. For more information, see Using with other push services.

Methods

void onMessageReceived(@NonNull final RemoteMessage
message)

Called when a push notification comes from
Firebase. For more information, see the
HmsMessageService.onMessageReceived method
description.

void onNewToken(@NonNull String token)

Called when the system generates a new
push token. For more information, see the
HmsMessageService.onNewToken(String token method
description.

void processPush(@NonNull final Context context, @NonNull
final RemoteMessage message)

Sends information about push notification to AppMetrica
Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

AppMetrica. AppMetrica

https://appmetrica.yandex.ru/docs/mobile-sdk-dg/push/android-other-push-services-settings.html
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/hmsmessageservice-0000001050173839-V5#EN-US_TOPIC_0000001070910002__section2394629102116
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/hmsmessageservice-0000001050173839-V5#EN-US_TOPIC_0000001070910002__section814414561477
https://developer.android.com/reference/android/content/Context
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5

AppMetrica Push SDK 17

void processPush(@NonNull final Context context, @NonNull
final Bundle data)

Sends information about push notification to AppMetrica
Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

void processToken(@NonNull final Context context, @NonNull
final String token)

Sends information about a push token to AppMetrica Push
SDK.

boolean isNotificationRelatedToSDK(@NonNull final RemoteMessage
notification)

Checks whether the push notification received belongs to the
AppMetrica PushSDK.

Method descriptions

onMessageReceived

public void onMessageReceived(@NonNull final RemoteMessage message)

Called when a push notification comes from Firebase. For more information, see the
HmsMessageService.onMessageReceived method description.

Parameters:

message The instance of RemoteMessage.

onNewToken

public void onNewToken(@NonNull String token)

Called when the system generates a new push token. For more information, see the
HmsMessageService.onNewToken(String token method description.

Parameters:

token Token used for sending push notifications.

processPush
public void processPush(@NonNull final Context context, @NonNull final
RemoteMessage message)

Sends information about push notification to AppMetrica Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

Call this method when you simultaneously use the AppMetrica Push SDK and HMS.

Parameters:

context The instance of the Context class.

message The instance of RemoteMessage.

processPush
public void processPush(@NonNull final Context context, @NonNull final Bundle data)

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/content/Context
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/hmsmessageservice-0000001050173839-V5#EN-US_TOPIC_0000001070910002__section2394629102116
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/hmsmessageservice-0000001050173839-V5#EN-US_TOPIC_0000001070910002__section814414561477
https://developer.android.com/reference/android/content/Context
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5
https://developer.android.com/reference/android/content/Context
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5
https://developer.android.com/reference/android/content/Context

AppMetrica Push SDK 18

Sends information about push notification to AppMetrica Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

This method must be called:

• When you simultaneously use the AppMetrica Push SDK and HMS.
• If you need to change push notification data. If you don't need to change data, use the method

processPush(@NonNull final Context context, @NonNull final RemoteMessage message).

Parameters:

context The instance of the Context class.

message The instance of the Bundle class. To get it, convert data
from RemoteMessage.getData() to Bundle.

processToken
public void processToken(@NonNull final Context context, @NonNull final String
token)

Sends information about a push token to AppMetrica Push SDK.

This method must be called when you simultaneously use AppMetrica Push SDK and Firebase Cloud Messaging.

Parameters:

context The instance of the Context class.

token Token used for sending push notifications.

isNotificationRelatedToSDK
static boolean isNotificationRelatedToSDK(@NonNull final RemoteMessage
notification)

Checks whether the push notification received belongs to the AppMetrica PushSDK.

Parameters:

notification The instance of RemoteMessage.

com.yandex.metrica.push.firebase
Classes
MetricaMessagingService class

com.yandex.metrica.push.firebase

public class MetricaMessagingService extends FirebaseMessagingService

Methods of the class are used to configure simultaneous use of the AppMetrica Push SDK and another push
service. For more information, see Using with other push services.

Methods

void onMessageReceived(@NonNull final RemoteMessage
message)

Called when a push notification is received from Firebase.
For more information, see the method description
FirebaseMessagingService.onMessageReceived.

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Context
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5#EN-US_TOPIC_0000001070309871__section18999122470
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/content/Context
https://developer.huawei.com/consumer/en/doc/HMSCore-References-V5/remotemessage-0000001050171874-V5
https://appmetrica.yandex.ru/docs/mobile-sdk-dg/push/android-other-push-services-settings.html
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService.html#onMessageReceived(com.google.firebase.messaging.RemoteMessage)

AppMetrica Push SDK 19

void onNewToken(@NonNull String token)

Called when the system generates a new
push token. For more information, see the
FirebaseMessagingService.onNewToken(String token)
method description.

void processPush(@NonNull final Context context, @NonNull
final RemoteMessage message)

Sends information about push notification to AppMetrica
Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

void processPush(@NonNull final Context context, @NonNull
final Bundle data)

Sends information about push notification to AppMetrica
Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

void processToken(@NonNull final Context context, @NonNull
final String token)

Sends information about a push token to AppMetrica Push
SDK.

boolean isNotificationRelatedToSDK(@NonNull final RemoteMessage
notification)

Checks whether the push notification received belongs to the
AppMetrica PushSDK.

Method descriptions

onMessageReceived

public void onMessageReceived(@NonNull final RemoteMessage message)

Called when a push notification is received from Firebase. For more information, see the method description
FirebaseMessagingService.onMessageReceived.

Parameters:

message The instance of RemoteMessage.

onNewToken

public void onNewToken(@NonNull String token)

Called when the system generates a new push token. For more information, see the
FirebaseMessagingService.onNewToken(String token) method description.

Parameters:

token Token used for sending push notifications.

AppMetrica. AppMetrica

https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService.html#onNewToken(java.lang.String)
https://developer.android.com/reference/android/content/Context
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/content/Context
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService.html#onMessageReceived(com.google.firebase.messaging.RemoteMessage)
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService.html#onNewToken(java.lang.String)

AppMetrica Push SDK 20

processPush
public void processPush(@NonNull final Context context, @NonNull final
RemoteMessage message)

Sends information about push notification to AppMetrica Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

This method must be called when you simultaneously use AppMetrica Push SDK and Firebase Cloud Messaging.

Parameters:

context The instance of the Context class.

message The instance of RemoteMessage.

processPush
public void processPush(@NonNull final Context context, @NonNull final Bundle data)

Sends information about push notification to AppMetrica Push SDK. AppMetrica automatically recognizes own
messages and processes only them.

This method must be called:

• When you use simultaneously AppMetrica Push SDK and Firebase Cloud Messaging;
• If you need to change push notification data. If you don't need to change data, use the method

processPush(@NonNull final Context context, @NonNull final RemoteMessage message).

Parameters:

context The instance of the Context class.

message The instance of the Bundle class. To get it, convert data
from RemoteMessage.getData() to Bundle.

processToken
public void processToken(@NonNull final Context context, @NonNull final String
token)

Sends information about a push token to AppMetrica Push SDK.

This method must be called when you simultaneously use AppMetrica Push SDK and Firebase Cloud Messaging.

Parameters:

context The instance of the Context class.

token Token used for sending push notifications.

isNotificationRelatedToSDK
static boolean isNotificationRelatedToSDK(@NonNull final RemoteMessage
notification)

Checks whether the push notification received belongs to the AppMetrica PushSDK.

Parameters:

notification The instance of RemoteMessage.

Migrating from GCM to Firebase

Since the AppMetrica Push SDK version 1.0.0, it uses the Firebase Cloud Messaging (FCM) service to send
push notifications.

This section explains the steps for migrating the application from Google Cloud Messaging to Firebase Cloud
Messaging.

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Context
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html
https://developer.android.com/reference/android/content/Context
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/content/Context
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html#getData()
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/content/Context
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/RemoteMessage.html

AppMetrica Push SDK 21

Step 1. Import a project

Import a Google project (if you used Google APIs to create a project):

1. Go to the Firebase console.
2. Click the Add project button.
3. In the drop-down list, select the name of the project you are planning to run push campaigns for.
4. Select the country your organization is officially registered in and click Add Firebase.
5. Click Add Firebase to your Android app and follow the instructions.

Step 2. Configuring your app

Edit the build.gradle file of the application (module):

1. Delete the following dependency:

dependencies {
 ...
 compile "com.google.android.gms:play-services-gcm:${versionGcm}"
 ...
}

2. Add the following dependencies:

dependencies {
 ...
 compile "com.google.firebase:firebase-messaging:19.0.1"
 compile "com.google.android.gms:play-services-base:16.1.0"
 compile "androidx.legacy:legacy-support-v4:1.0.0"
 ...
}

3. Update the AppMetrica library version:

compile "com.yandex.android:mobmetricapushlib:APPMETRICA_VERSION"

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Changelog

Version 2.3.2

Released October 4, 2023

• Fixed the No field Companion of type Lio/appmetrica/analytics/ModuleEvent$Companion
error.

Version 2.3.1

Released July 31, 2023

• Improved performance and stability of the library.

Version 2.2.0

Released June 2, 2022

• minSdkVersion (in appmetricapush-provider-hms) increased to 17.
• Updated the hms version to 6.5.0.300.
• Accelerated PushSDK activation.

Version 2.1.1

Released 14 March 2022

AppMetrica. AppMetrica

https://console.firebase.google.com/

AppMetrica Push SDK 22

• Fixed a bug BadParcelableException: Parcelable protocol requires a
Parcelable.Creator object called CREATOR.

Version 2.1.0

Released February 24, 2022

• Improved token acquisition.
• The YandexMetricaPush.getTokens method returns new tokens when called from

TokenUpdateListener.onTokenUpdated.
• Improved performance and stability of the library.

Version 2.0.0

Released 28 October 2021

• Fixed a bug that occasionally occurred when processing a click on a push in Android 12.
• Switching from support dependencies to AndroidX.

Version 1.14.0

Released 23 September 2021

• AppMetrica version updated to 4.0.0.
• Added support for Android 12.
• Improved performance and stability of the library.

Version 1.13.0

Released 22 July 2021

• Added support for com.google.firebase:firebase-messaging:22.0.0. Minimum supported version:
20.3.0.

Version 1.12.0

Released July 7, 2021

• Fixed a possible cause for rejecting an app's publication in Google Play due to Implicit PendingIntent.

Version 1.11.1

Released May 14, 2021

• Fixed a build issue when multiple push providers connect at the same time.

Version 1.11.0

Released April 28, 2021

• Added the isNotificationRelatedToSDK method. You can use this method to determine whether the push
notification received belongs to the AppMetrica PushSDK.

• Added the processToken method. This method passes the push token to AppMetrica when AppMetrica
PushSDK is used together with other SDKs.

• Improved performance and stability of the library.

Version 1.10.0

Released 15 December 2020

• Added support of HMS push notifications. For more information, see Installation and initialization and
Configuring your app.

• Stopped supporting the YandexMetricaPush.getToken() method. Use the YandexMetricaPush.getTokens()
method instead.

• Added the TokenUpdateListener interface.

AppMetrica. AppMetrica

https://support.google.com/faqs/answer/10437428

AppMetrica Push SDK 23

• Added methods:

• YandexMetricaPush.init(Context ctx, PushServiceControllerProvider... providers).
• YandexMetricaPush.getTokens().
• YandexMetricaPush.setTokenUpdateListener(TokenUpdateListener listener).

• The manifest supports the new required Firebase ID: ymp_firebase_default_project_id.
• Deleted request for permission to track location FINE_LOCATION.
• Improved performance and stability of the library.

Version 1.5.1

Released 3 September 2019

• Fixed an issue that led to the JobIntentService crash.

Version 1.5.0

Release 8 August 2019

• Added the feature for setting default push notification icon .
• Stop supporting the class MetricaInstanceIdService. Use the MetricaMessagingService.onNewToken(String

token) method to update the token.

Version 1.4.1

Released 18 March 2019

• Fixed the obfuscation problem.

Version 1.4.0

Released 14 March 2019

• Added images caching using the library OKHttp.
• Added dependency on com.squareup.okhttp3:okhttp version 3.12.1.
• Added the following rule: AppMetrica Push SDK you can initialize only in the main process. Initialization in

other processes is ignored.
• Fixed initialization of the Push SDK with com.google.firebase: firebase-auth.
• Added real-time notification status tracking (for Android 9).

Version 1.3.0

Released 1 October 2018

• Added the method YandexMetricaPush.getDefaultNotificationChannel() to receive the push
notification channel that is used by default. You can set settings for it using the methods NotificationChannel
until the first push notification is received.

• Changed the default channel priority from IMPORTANCE_DEFAULT (with sound) to IMPORTANCE_LOW
(without sound).

Version 1.2.0

Released 20 August 2018

• Added support of push notification channels (for Android 8 and higher).
• Added tracking of disabled notifications.

Version 1.1.0

Released 15 May 2018

• Added support for AppMetrica SDK 3.0.0.

Version 1.0.0

Released 15 February 2018

AppMetrica. AppMetrica

https://h.yandex-team.ru/?https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2FManifest.permission%3Fhl%3Dru%23ACCESS_FINE_LOCATION
https://developer.android.com/reference/android/support/v4/app/JobIntentService
https://github.com/square/okhttp
https://developer.android.com/reference/android/app/NotificationChannel
https://developer.android.com/reference/android/app/NotificationManager.html#IMPORTANCE_DEFAULT
https://developer.android.com/reference/android/app/NotificationManager.html#IMPORTANCE_LOW
https://developer.android.com/training/notify-user/channels

AppMetrica Push SDK 24

• Migrated from GCM to Firebase.
• Fixed an issue with PackageManager.
• Updated minimal versions of the following components:

• Support Library is 26.0.0.
• Android API is 14.

Version 0.6.1

Released 31 October 2017

• Added support for Android 8.

Version 0.5.0

Released 21 January 2017

• When opening the default launcher activity from a push notification, the Intent action is added from
YandexMetricaPush#OPEN_DEFAULT_ACTIVITY_ACTION.

Version 0.4.0

Released 21 November 2016

• Added support for push notification styles: BigTextStyle and BigPictureStyle.
• Added support for configuring sound alerts when push notifications are received.

Version 0.3.0

Released 10 October 2016

• Integrated with the AppMetrica SDK library.

iOS

Connecting the AppMetrica Push SDK

Before using the AppMetrica Push SDK 1.3.0, you need to enable and initialize the AppMetrica SDK version 3.4.1
or higher.

Step 1. Enable the library

The library can work with the following dependency managers:

CocoaPods

The library supports static and dynamic frameworks for CocoaPods. To enable the library, add a dependency to the
project's Podfile:

• Static framework

pod 'YandexMobileMetricaPush', '1.3.0'

• Dynamic framework

pod 'YandexMobileMetricaPush/Dynamic', '1.3.0'

Сarthage

To enable the library, add the following dependency to the Cartfile and save the file:

binary "https://raw.githubusercontent.com/yandexmobile/metrica-push-sdk-ios/master/YandexMobileMetricaPush.json"
 ~> 1.3.0

Swift Package Manager

To connect the library, follow these steps:

AppMetrica. AppMetrica

https://developer.android.com/reference/android/content/Intent.html#CATEGORY_DEFAULT
https://developer.android.com/reference/android/content/Intent.html#CATEGORY_LAUNCHER
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Intent.html#getAction()
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.BigTextStyle.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.BigPictureStyle.html

AppMetrica Push SDK 25

1. In Xcode, go to the Swift Packages tab for your project.

AppMetrica. AppMetrica

AppMetrica Push SDK 26

2. Specify the repository URL https://github.com/yandexmobile/metrica-push-sdk-ios, which contains a
Swift package.

AppMetrica. AppMetrica

AppMetrica Push SDK 27

3. Configure a rule for selecting the package version.

Restriction:

Connection using Swift Package Manager is supported starting from version 1.0.0 of the AppMetrica SDK.

4. Select the required libraries.

If you don't use these dependency managers

To enable the library, follow these steps:

1. Download the AppMetrica Push library.
2. Add YandexMobileMetricaPush.framework to the project.

Note: The AppMetrica SDK and AppMetrica Push SDK libraries must both be enabled in one of these ways.

Step 2. Register your app in the Apple Push Notification Service (APNs)

Registration prepares the app to work with push notifications. To send notifications to devices with iOS version 7
and higher, make the following changes to the application code:

Swift

// Register for push notifications
if #available(iOS 10.0, *) {
 // iOS 10.0 and above.
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options:[.badge, .alert, .sound]) { (granted, error) in
 // Enable or disable features based on authorization.
 }
} else {

AppMetrica. AppMetrica

https://storage.mds.yandex.net/get-appmetrica-mobile-sdk/128534/YandexMobileMetricaPush-1.0.0-ios-11df8ee2-df87-4f7f-a7b1-1c0718953680.zip

AppMetrica Push SDK 28

 // iOS 8 and iOS 9.
 let settings = UIUserNotificationSettings(types: [.badge, .alert, .sound], categories: nil)
 application.registerUserNotificationSettings(settings)
}
application.registerForRemoteNotifications()

This data is usually passed in the following method:

func application(_ application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey :Any]? = nil) -> Bool

For more details about the methods used, see the documentation at developer.apple.com:

UNUserNotificationCenter.current()
UNUserNotificationCenter.requestAuthorization(options:completionHandler:)
UIUserNotificationSettings(types:categories:)
UIApplication.registerUserNotificationSettings(_:)
UIApplication.registerForRemoteNotifications()

Objective-C

if ([application respondsToSelector:@selector(registerForRemoteNotifications)]) {
 if (NSClassFromString(@"UNUserNotificationCenter") != Nil) {
 // iOS 10.0 and above
 UNAuthorizationOptions options =
 UNAuthorizationOptionAlert |
 UNAuthorizationOptionBadge |
 UNAuthorizationOptionSound;
 UNUserNotificationCenter *center = [UNUserNotificationCenter currentNotificationCenter];
 [center requestAuthorizationWithOptions:options completionHandler:^(BOOL granted, NSError *error) {
 // Enable or disable features based on authorization.
 }];
 }
 else {
 // iOS 8 and iOS 9
 UIUserNotificationType userNotificationTypes =
 UIUserNotificationTypeAlert |
 UIUserNotificationTypeBadge |
 UIUserNotificationTypeSound;
 UIUserNotificationSettings *settings =
 [UIUserNotificationSettings settingsForTypes:userNotificationTypes categories:nil];
 [application registerUserNotificationSettings:settings];
 }
 [application registerForRemoteNotifications];
}

This data is usually passed in the following method:

 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

For more details about the methods used, see the documentation at developer.apple.com:

[UNUserNotificationCenter currentNotificationCenter]
[UNUserNotificationCenter requestAuthorizationWithOptions:completionHandler:]
[UIUserNotificationSettings settingsForTypes:categories:]
[UIApplication registerUserNotificationSettings]
[UIApplication registerForRemoteNotifications]

Step 3. Register a device token for your app

To send push notifications using AppMetrica, your app's device token is required. To register it:

Swift

Add the following code to AppDelegate:

func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken:
 Data)
{
 // If the AppMetrica SDK library was not initialized before this step,
 // calling the method causes the app to crash.
 YMPYandexMetricaPush.setDeviceTokenFrom(deviceToken)
}

Objective-C

Add the following code to your implementation of UIApplicationDelegate:

- (void)application:(UIApplication *)application didRegisterForRemoteNotificationsWithDeviceToken:(NSData
 *)deviceToken

AppMetrica. AppMetrica

https://developer.apple.com/documentation/usernotifications/unusernotificationcenter/1649510-current
https://developer.apple.com/documentation/usernotifications/unusernotificationcenter/1649527-requestauthorization
https://developer.apple.com/documentation/uikit/uiusernotificationsettings/1615401-init
https://developer.apple.com/documentation/uikit/uiapplication/1622932-registerusernotificationsettings
https://developer.apple.com/documentation/uikit/uiapplication/1623078-registerforremotenotifications
https://developer.apple.com/documentation/usernotifications/unusernotificationcenter/1649510-currentnotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenter/1649527-requestauthorizationwithoptions?language=objc
https://developer.apple.com/documentation/uikit/uiusernotificationsettings/1615401-settingsfortypes
https://developer.apple.com/documentation/uikit/uiapplication/1622932-registerusernotificationsettings?language=objc
https://developer.apple.com/documentation/uikit/uiapplication/1623078-registerforremotenotifications?language=objc

AppMetrica Push SDK 29

{
 // If the AppMetrica SDK library was not initialized before this step,
 // calling the method causes the app to crash.
 [YMPYandexMetricaPush setDeviceTokenFromData:deviceToken];
}

To register the device token and send the APN environments, add the following code:

Swift

func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken:
 Data)
{
 // If the AppMetrica SDK library was not initialized before this step,
 // calling the method causes the app to crash.
 #if DEBUG
 let pushEnvironment = YMPYandexMetricaPushEnvironment.development
 #else
 let pushEnvironment = YMPYandexMetricaPushEnvironment.production
 #endif
 YMPYandexMetricaPush.setDeviceTokenFrom(deviceToken, pushEnvironment: pushEnvironment)
}

Objective-C

- (void)application:(UIApplication *)application didRegisterForRemoteNotificationsWithDeviceToken:(NSData
 *)deviceToken
{
 // If the AppMetrica SDK library was not initialized before this step,
 // calling the method causes the app to crash.
 #ifdef DEBUG
 YMPYandexMetricaPushEnvironment pushEnvironment = YMPYandexMetricaPushEnvironmentDevelopment;
 #else
 YMPYandexMetricaPushEnvironment pushEnvironment = YMPYandexMetricaPushEnvironmentProduction;
 #endif
 [YMPYandexMetricaPush setDeviceTokenFromData:deviceToken pushEnvironment:pushEnvironment];
}

Attention: AppMetrica allows you to send push notifications to Sandbox APNs. However, push
notification processing may not work correctly if versions of the application with different environments
were run on the device(development and production). To avoid this issue, you can use a separate test API
key for development environment.

Step 4. Configure handling the opening of push notifications.

Configure handling the opening of push notifications:

1. Add the following code to the appropriate AppDelegate | UIApplicationDelegate methods:

Swift

func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any])
{
 self.handlePushNotification(userInfo)
}

func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any],
 fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult) -> Void)
{
 self.handlePushNotification(userInfo)
 completionHandler(.newData)
}

func handlePushNotification(_ userInfo: [AnyHashable : Any])
{
 // Track received remote notification.
 // Method [YMMYandexMetrica activateWithApiKey:] should be called before using this method.
 YMPYandexMetricaPush.handleRemoteNotification(userInfo)
}

Objective-C

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 [YMPYandexMetricaPush handleApplicationDidFinishLaunchingWithOptions:launchOptions];
 return YES;
}
- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo
{
 [YMPYandexMetricaPush handleRemoteNotification:userInfo];
}
- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo
 fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionHandler

AppMetrica. AppMetrica

AppMetrica Push SDK 30

{
 [YMPYandexMetricaPush handleRemoteNotification:userInfo];
}

2. If you also use UISceneDelegate, add the following code to the scene(_:willConnectTo:options:)
method:

Swift

func scene(_ scene: UIScene, willConnectTo
 session: UISceneSession, options
 connectionOptions: UIScene.ConnectionOptions) {
 YMPYandexMetricaPush.handleSceneWillConnectToSession(with: connectionOptions)
}

Objective-C

- (void)scene:(UIScene *)scene willConnectToSession:(UISceneSession *)session
 options:(UISceneConnectionOptions *)connectionOptions
{
 [YMPYandexMetricaPush handleSceneWillConnectToSessionWithOptions:connectionOptions];
}

Handling push notifications for iOS 9 and below

If you have iOS 9 and lower or you don't use the new notification feature on iOS 10, you'll need to track the receipt
of push notifications yourself. To track push notification openings and other actions with them, use the appropriate
UIApplicationDelegate methods.

Handling push notifications for iOS 10 and higher

If you have iOS 10 or higher and want to use the new type of push notifications introduced in iOS 10, use the
YMPUserNotificationCenterDelegate delegate. It handles the receipt of push notifications automatically when
they're opened.

Make the following changes to the code:

Swift

import UserNotifications

// In the "func application(_ application: UIApplication, didFinishLaunchingWithOptions
// launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool" method:
if #available(iOS 10.0, *) {
 let delegate = YMPYandexMetricaPush.userNotificationCenterDelegate()
 UNUserNotificationCenter.current().delegate = delegate
}

Objective-C

#import <UserNotifications/UserNotifications.h>

// In the "- (BOOL)application:(UIApplication *)application
// didFinishLaunchingWithOptions:(NSDictionary *)launchOptions" method:
if ([UNUserNotificationCenter class] != Nil) {
 [UNUserNotificationCenter currentNotificationCenter].delegate =
 [YMPYandexMetricaPush userNotificationCenterDelegate];
}

To track push notification openings and other actions with them, create your own delegate named
UNUserNotificationCenterDelegate and add it to nextDelegate:

Swift

YMPYandexMetricaPush.userNotificationCenterDelegate().nextDelegate = yourDelegate

Objective-C

[YMPYandexMetricaPush userNotificationCenterDelegate].nextDelegate = yourDelegate;

After that, you can use the appropriate methods of your delegate.

Step 5. (Optional) Enable push tokens update

The APNS service can withdraw the push token of the device, for example, if the user did not launch the
application for a long time. AppMetrica stores push tokens on the server and can not send a push notification to a
device with an obsolete token.

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiscenedelegate

AppMetrica Push SDK 31

To automatically collect current push token go to the application settings in the AppMetrica interface and enable
the Update tokens with a Silent Push notification option in the Push Notifications tab.

Step 6. (Optional) Configure uploading attached files

Note:

The functionality is not available in the web interface of push campaigns.

You can configure uploading attached files in push notifications:

1. Configure uploading attached files in push notifications by calling the
downloadAttachmentsForNotificationRequest method in the Push SDK. See an example of integration in the
article Uploading attached files.

2. Add attachments (the attachments parameter) using the Sending push messages operation in the Push
API.

Sending additional information

You can send additional information with the push notification if necessary. This data is specified in the
AppMetrica web interface when configuring the push campaign. To get this information, use the following method:

Swift

let userData = YMPYandexMetricaPush.userData(forNotification: userInfo)

Objective-C

NSString *userData = [YMPYandexMetricaPush userDataForNotification:userInfo];

where userInfo contains information about the push notification.

Defining the recipient of a notification

AppMetrica allows you to detect “own” push notifications, if several Push SDKs were built into the application.

To detect, if the AppMetrica is the recipient of a notification, use the following method:

Swift

let isRelatedToAppMetricaSDK = YMPYandexMetricaPush.isNotificationRelated(toSDK: userInfo)

Objective-C

BOOL isRelatedToAppMetricaSDK = [YMPYandexMetricaPush isNotificationRelatedToSDK:userInfo];

See also
Configuring an iOS application to send push notifications on page 46
Related information
Example of library integration

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Objective-C reference

Classes
YMPYandexMetricaPush class

The main class for push notifications handling.

AppMetrica. AppMetrica

https://github.com/yandexmobile/metrica-push-sdk-ios

AppMetrica Push SDK 32

Instance methods

+downloadAttachmentsForNotificationRequest: Uploads attached files in push notifications. The method is
available for iOS 10.0 and higher.

+handleApplicationDidFinishLaunchingWithOptions: Handles push notification openings from the method
application:didFinishLaunchingWithOptions:. Method should
be invoked after AppMetrica SDK initialization.

+handleDidReceiveNotificationRequest: Handles push notifications receiving from Notification Service
Extension.

+handleRemoteNotification: Handles push notification openings from the method
application:didReceiveRemoteNotification:fetchCompletionHandler.
Method should be invoked after AppMetrica SDK
initialization.

+handleSceneWillConnectToSession: Handles opening push notifications from the method
scene:willConnectToSession:options:. Method should be
invoked after AppMetrica SDK initialization.

+isNotificationRelatedToSDK: Returns YES if a push notification is related to AppMetrica.

+setDeviceTokenFromData: Registers the device token for an application with a
production environment. Method should be invoked after
AppMetrica SDK initialization.

+setDeviceTokenFromData:pushEnvironment: Registers the device token of the application with the
specified environment. Method should be invoked after
AppMetrica SDK initialization.

+setExtensionAppGroup: Registers the App Groups shared group for the app and
Notification Service Extension.

+userDataForNotification: Returns an arbitrary data string that is passed in the push
notification:

• In the Additional data field when sending from the
AppMetrica interface.

• In the data field when sending using the Push API.

+userNotificationCenterDelegate: Returns a delegate YMPUserNotificationCenterDelegate,
which handles foreground push notifications on iOS 10 and
higher.

+userNotificationCenterHandler: Returns a delegate YMPUserNotificationCenterHandling,
which allows you to manually handle foreground push
notifications on iOS 10 and higher.

Method descriptions

+downloadAttachmentsForNotificationRequest:

+ (void)downloadAttachmentsForNotificationRequest:(UNNotificationRequest *)request
 callback:(YMPAttachmentsDownloadCallback)callback);

Uploads attached files in push notifications. The method is available for iOS 10.0 and higher.

Parameters:

request The instance of UNNotificationRequest.

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=objc
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1623013-application?language=objc
https://developer.apple.com/documentation/uikit/uiscenedelegate/3197914-scene?language=objc
https://developer.apple.com/documentation/usernotifications/unnotificationrequest

AppMetrica Push SDK 33

callback The callback block for uploading
attached files. Format: typedef void
(^YMPAttachmentsDownloadCallback)
(NSArray<UNNotificationAttachment *> *
_Nullable attachments, NSError * _Nullable
error). Includes an array of attachments and an error if
an error occurs when uploading files.

+handleApplicationDidFinishLaunchingWithOptions:

+ (void)handleApplicationDidFinishLaunchingWithOptions:(nullable NSDictionary *)launchOptions

Handles push notification openings from the method application:didFinishLaunchingWithOptions:. Method should
be invoked after AppMetrica SDK initialization.

Parameters:

launchOptions Parameters as key-value pairs that contain information about
the application start.

+handleDidReceiveNotificationRequest:

+ (void)handleDidReceiveNotificationRequest:(UNNotificationRequest *)request

Handles push notifications receiving from Notification Service Extension.

You should call the method in the implementation of didReceiveNotificationRequest:withContentHandler:.

Parameters:

request The instance of UNNotificationRequest.

+handleRemoteNotification:

+ (void)handleRemoteNotification:(NSDictionary *)userInfo

Handles push notification openings from the method
application:didReceiveRemoteNotification:fetchCompletionHandler. Method should be invoked after AppMetrica
SDK initialization.

Parameters:

userInfo Parameters of push notifications as key-value pairs that are
transmitted by the system.

+handleSceneWillConnectToSession:

+ (void)handleSceneWillConnectToSessionWithOptions:(UISceneConnectionOptions *)connectionOptions

Handles opening push notifications from the method scene:willConnectToSession:options:. Method should be
invoked after AppMetrica SDK initialization.

Parameters:

connectionOptions The UISceneConnectionOptions class object with connection
parameters that are transmitted by the system.

+isNotificationRelatedToSDK:

+ (BOOL)isNotificationRelatedToSDK:(NSDictionary *)userInfo;

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=objc
https://developer.apple.com/documentation/usernotifications/unnotificationserviceextension/1648229-didreceivenotificationrequest
https://developer.apple.com/documentation/usernotifications/unnotificationrequest?language=objc
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1623013-application?language=objc
https://developer.apple.com/documentation/uikit/uiscenedelegate/3197914-scene?language=objc
https://developer.apple.com/documentation/uikit/uisceneconnectionoptions?language=objc

AppMetrica Push SDK 34

Returns YES if a push notification is related to AppMetrica.

Parameters:

userInfo Parameters of push notifications as key-value pairs that are
transmitted by the system.

Returns:

• YES — If the push notification refers to AppMetrica.
• NO — If the push notification is not related to AppMetrica.

+setDeviceTokenFromData:

+ (void)setDeviceTokenFromData:(nullable NSData *)data

Registers the device token for an application with a production environment. Method should be invoked after
AppMetrica SDK initialization.

Parameters:

data Device token of the application.

If you pass the nil value, the previous device token is
revoked.

+setDeviceTokenFromData:pushEnvironment:

+ (void)setDeviceTokenFromData:(nullable NSData *)data
 pushEnvironment:(YMPYandexMetricaPushEnvironment)pushEnvironment

Registers the device token of the application with the specified environment. Method should be invoked after
AppMetrica SDK initialization.

Attention: AppMetrica allows you to send push notifications to Sandbox APNs. However, push
notification processing may not work correctly if versions of the application with different environments
were run on the device(development and production). To avoid this issue, you can use a separate test API
key for development environment.

Parameters:

data Device token of the application.

If you pass the nil value, the previous device token is
revoked.

pushEnvironment APNs app environment.

+setExtensionAppGroup:

+ (void)setExtensionAppGroup:(NSString *)appGroup

Registers the App Groups shared group for the app and Notification Service Extension.

Registration is necessary for tracking the delivery of push notifications. For more information, see Configuring
statistics collection for push notifications.

Parameters:

appGroup The name of the shared App Groups group.

AppMetrica. AppMetrica

AppMetrica Push SDK 35

+userDataForNotification:

+ (nullable NSString *)userDataForNotification:(NSDictionary *)userInfo

Returns an arbitrary data string that is passed in the push notification:

• In the Additional data field when sending from the AppMetrica interface.
• In the data field when sending using the Push API.

Parameters:

userInfo Parameters of push notifications as key-value pairs that are
transmitted by the system.

Returns:

An arbitrary data string.

+userNotificationCenterDelegate

+ (id<YMPUserNotificationCenterDelegate>)userNotificationCenterDelegate

Returns a delegate YMPUserNotificationCenterDelegate, which handles foreground push notifications on iOS 10
and higher.

To handle foreground push notifications, add this code to the application: didFinishLaunchingWithOptions:
method:

[UNUserNotificationCenter currentNotificationCenter].delegate = [YMPYandexMetricaPush
 userNotificationCenterDelegate];

For manual handling of push notifications, use +userNotificationCenterHandler.

Returns:

A delegate that implements the YMPUserNotificationCenterDelegate protocol.

+userNotificationCenterHandler

+ (id<YMPUserNotificationCenterHandling>)userNotificationCenterHandler

Returns a delegate YMPUserNotificationCenterHandling, which allows you to manually handle foreground push
notifications on iOS 10 and higher.

Use this delegate if you implement the UNUserNotificationCenterDelegate protocol with custom logic. In this
case, you should implement all methods of the UNUserNotificationCenterDelegate delegate and call the
corresponding methods in YMPUserNotificationCenterHandling.

For simplified push notification handling, use +userNotificationCenterDelegate.

Returns:

A delegate that implements the YMPUserNotificationCenterHandling protocol.

Protocols
YMPUserNotificationCenterDelegate protocol

A delegate for handling foreground push notifications on iOS 10 and higher.

To handle foreground push notifications, add this code to the application: didFinishLaunchingWithOptions:
method:

[UNUserNotificationCenter currentNotificationCenter].delegate = [YMPYandexMetricaPush
 userNotificationCenterDelegate];

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate?language=objc
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=objc

AppMetrica Push SDK 36

Properties

presentationOptions Parameters for displaying push notifications. They
are passed to the handler userNotificationCenter:
willPresentNotification: withCompletionHandler:.

nextDelegate A delegate to which calls of this protocol will be proxied.

Property descriptions

presentationOptions

(nonatomic, assign) UNNotificationPresentationOptions presentationOptions

Parameters for displaying push notifications. They are passed to the handler userNotificationCenter:
willPresentNotification: withCompletionHandler:.

The delegate invokes the handler if the nextDelegate property is not set or if the object is in nextDelegate
does not respond to the selector.

nextDelegate

(nonatomic, weak, nullable) id<UNUserNotificationCenterDelegate> nextDelegate;

A delegate to which calls of this protocol will be proxied.

YMPUserNotificationCenterHandling Class

A delegate for manual handling foreground push notifications on iOS 10 and higher.

Use this delegate if you implement the UNUserNotificationCenterDelegate protocol with custom logic. You
should implement all methods of UNUserNotificationCenterDelegate and call proper methods in
YMPUserNotificationCenterHandling.

The implementation of this delegate is called by the
YMPYandexMetricaPush.userNotificationCenterDelegate method.

Instance methods

-userNotificationCenterWillPresentNotification: You should call this method in your implementation of
userNotificationCenter:willPresentNotification:withCompletionHandler:.

-userNotificationCenterDidReceiveNotificationResponse: You should call this method in your implementation of
userNotificationCenter:didReceiveNotificationResponse:withCompletionHandler:.

-userNotificationCenterOpenSettingsForNotification: You should call this method in your implementation of
userNotificationCenter:openSettingsForNotification:.

Method descriptions

-userNotificationCenterWillPresentNotification:

- (void)userNotificationCenterWillPresentNotification:(UNNotification *)notification

You should call this method in your implementation of
userNotificationCenter:willPresentNotification:withCompletionHandler:.

Parameters:

notification The instance of UNNotification.

AppMetrica. AppMetrica

https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unnotificationpresentationoptions
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649501-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/2981869-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unnotification
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unnotification

AppMetrica Push SDK 37

-userNotificationCenterDidReceiveNotificationResponse:

- (void)userNotificationCenterDidReceiveNotificationResponse:(UNNotificationResponse *)response;

You should call this method in your implementation of
userNotificationCenter:didReceiveNotificationResponse:withCompletionHandler:.

Parameters:

notification The instance of UNNotificationResponse.

-userNotificationCenterOpenSettingsForNotification:

- (void)userNotificationCenterOpenSettingsForNotification:(nullable UNNotification *)notification
 API_AVAILABLE(ios(12.0));

You should call this method in your implementation of userNotificationCenter:openSettingsForNotification:.

Parameters:

notification The instance of UNNotification.

Enumerations
YMPYandexMetricaPushEnvironment

Contains possible types of environments.

Enumerations

YMPYandexMetricaPushEnvironment

######## ############

YMPYandexMetricaPushEnvironment

typedef NS_ENUM(NSUInteger, YMPYandexMetricaPushEnvironment)

Constants Description

YMPYandexMetricaPushEnvironmentProduction Environment for production certificates.

YMPYandexMetricaPushEnvironmentDevelopment Environment for production and development certificates.

Swift reference

Classes
YMPYandexMetricaPush class

The main class for push notifications handling.

Instance methods

+downloadAttachmentsForNotificationRequest: Uploads attached files in push notifications. The method is
available for iOS 10.0 and higher.

+handleApplicationDidFinishLaunchingWithOptions: Handles push notification openings from the method
application (_: didFinishLaunchingWithOptions:). Method
should be invoked after AppMetrica SDK initialization.

+handleDidReceiveNotificationRequest: Handles push notifications receiving from Notification Service
Extension.

AppMetrica. AppMetrica

https://developer.apple.com/documentation/usernotifications/unnotificationresponse
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649501-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unnotificationresponse
https://developer.apple.com/documentation/usernotifications/unnotification
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/2981869-usernotificationcenter?language=objc
https://developer.apple.com/documentation/usernotifications/unnotification
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=swift

AppMetrica Push SDK 38

+handleRemoteNotification: Handles push notification openings from the method
application(_:didReceiveRemoteNotification:fetchCompletionHandler:)
Method should be invoked after AppMetrica SDK
initialization.

+handleSceneWillConnectToSession: Handles push notification openings from the method
scene(_:willConnectTo:options:). Method should be invoked
after AppMetrica SDK initialization.

+isNotificationRelatedToSDK: Returns YES if a push notification is related to AppMetrica.

+setDeviceTokenFromData: Registers the device token for an application with a
production environment. Method should be invoked after
AppMetrica SDK initialization.

+setDeviceTokenFromData:pushEnvironment: Registers the device token of the application with the
specified environment. Method should be invoked after
AppMetrica SDK initialization.

+setExtensionAppGroup: Registers the App Groups shared group for the app and
Notification Service Extension.

+userDataForNotification: Returns an arbitrary data string that is passed in the push
notification:

• In the Additional data field when sending from the
AppMetrica interface.

• In the data field when sending using the Push API.

+userNotificationCenterDelegate: Returns a delegate YMPUserNotificationCenterDelegate,
which handles foreground push notifications on iOS 10 and
higher.

+userNotificationCenterHandler: Returns a delegate YMPUserNotificationCenterHandling,
which allows you to manually handle foreground push
notifications on iOS 10 and higher.

Method descriptions

downloadAttachmentsForNotificationRequest:

class func downloadAttachments(request: UNNotificationRequest, callback: YMPAttachmentsDownloadCallback)

Uploads attached files in push notifications. The method is available for iOS 10.0 and higher.

Parameters:

request The instance of UNNotificationRequest.

callback The callback block for uploading notification
contents. Format: public typealias
YMPAttachmentsDownloadCallback =
([UNNotificationAttachment]?, Error?) ->
Void. Includes an array of attachments and an error if
an error occurs when uploading files.

handleApplicationDidFinishLaunching(withOptions:)

class func handleApplicationDidFinishLaunching(withOptions launchOptions: [AnyHashable : Any]?)

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1623013-application?language=swift
https://developer.apple.com/documentation/uikit/uiscenedelegate/3197914-scene
https://developer.apple.com/documentation/usernotifications/unnotificationrequest

AppMetrica Push SDK 39

Handles push notification openings from the method application (_: didFinishLaunchingWithOptions:). Method
should be invoked after AppMetrica SDK initialization.

Parameters:

launchOptions Parameters as key-value pairs that contain information about
the application start.

handleDidReceive(_:)

class func handleDidReceive(_ request: UNNotificationRequest?)

Handles push notifications receiving from Notification Service Extension.

You should call the method in the implementation of didReceive (_: withContentHandler:).

Parameters:

request The instance of UNNotificationRequest.

handleRemoteNotification(_:)

class func handleRemoteNotification(_ userInfo: [AnyHashable : Any]?)

Handles push notification openings from the method
application(_:didReceiveRemoteNotification:fetchCompletionHandler:) Method should be invoked after
AppMetrica SDK initialization.

Parameters:

userInfo Parameters of push notifications as key-value pairs that are
transmitted by the system.

handleSceneWillConnectToSession(with: connectionOptions)

class func handleSceneWillConnectToSession(with: connectionOptions)

Handles push notification openings from the method scene(_:willConnectTo:options:). Method should be invoked
after AppMetrica SDK initialization.

Parameters:

connectionOptions The UIScene.ConnectionOptions class object with
connection parameters that are transmitted by the system.

isNotificationRelated(toSDK:)

class func isNotificationRelated(toSDK userInfo: [AnyHashable : Any]?) -> Bool

Returns YES if a push notification is related to AppMetrica.

Parameters:

userInfo Parameters of push notifications as key-value pairs that are
transmitted by the system.

Returns:

• YES — If the push notification refers to AppMetrica.
• NO — If the push notification is not related to AppMetrica.

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=swift
https://developer.apple.com/documentation/usernotifications/unnotificationserviceextension/1648229-didreceive
https://developer.apple.com/documentation/usernotifications/unnotificationrequest?language=swift
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1623013-application?language=swift
https://developer.apple.com/documentation/uikit/uiscenedelegate/3197914-scene
https://developer.apple.com/documentation/uikit/uiscene/connectionoptions

AppMetrica Push SDK 40

setDeviceTokenFrom(_:)

class func setDeviceTokenFrom(_ data: Data?)

Registers the device token for an application with a production environment. Method should be invoked after
AppMetrica SDK initialization.

Parameters:

data Device token of the application.

If you pass the nil value, the previous device token is
revoked.

setDeviceTokenFrom(_:pushEnvironment:)

class func setDeviceTokenFrom(_ data: Data?, pushEnvironment: YMPYandexMetricaPushEnvironment)

Registers the device token of the application with the specified environment. Method should be invoked after
AppMetrica SDK initialization.

Attention: AppMetrica allows you to send push notifications to Sandbox APNs. However, push
notification processing may not work correctly if versions of the application with different environments
were run on the device(development and production). To avoid this issue, you can use a separate test API
key for development environment.

Parameters:

data Device token of the application.

If you pass the nil value, the previous device token is
revoked.

pushEnvironment APNs app environment.

setExtensionAppGroup(_:)

class func setExtensionAppGroup(_ appGroup: String?)

Registers the App Groups shared group for the app and Notification Service Extension.

Registration is necessary for tracking the delivery of push notifications. For more information, see Configuring
statistics collection for push notifications.

Parameters:

appGroup The name of the shared App Groups group.

userData(forNotification:)

class func userData(forNotification userInfo: [AnyHashable : Any]?) -> String?

Returns an arbitrary data string that is passed in the push notification:

• In the Additional data field when sending from the AppMetrica interface.
• In the data field when sending using the Push API.

Parameters:

userInfo Parameters of push notifications as key-value pairs that are
transmitted by the system.

AppMetrica. AppMetrica

AppMetrica Push SDK 41

Returns:

An arbitrary data string.

userNotificationCenterDelegate()

class func userNotificationCenterDelegate() -> YMPUserNotificationCenterDelegate?

Returns a delegate YMPUserNotificationCenterDelegate, which handles foreground push notifications on iOS 10
and higher.

To handle foreground push notifications, add this code to the application(_:didFinishLaunchingWithOptions:)
method:

let delegate = YMPYandexMetricaPush.userNotificationCenterDelegate()
UNUserNotificationCenter.current().delegate = delegate

To manually handle push notifications, use userNotificationCenterHandler().

Returns:

A delegate that implements the YMPUserNotificationCenterDelegate protocol.

userNotificationCenterHandler()

class func userNotificationCenterHandler() -> YMPUserNotificationCenterHandling?

Returns a delegate YMPUserNotificationCenterHandling, which allows you to manually handle foreground push
notifications on iOS 10 and higher.

Use this delegate if you implement the UNUserNotificationCenterDelegate protocol with custom logic. In this
case, you should implement all methods of the UNUserNotificationCenterDelegate delegate and call the
corresponding methods in YMPUserNotificationCenterHandling.

For simplified push notification handling, use userNotificationCenterDelegate()

Returns:

A delegate that implements the YMPUserNotificationCenterHandling protocol.

Protocols
YMPUserNotificationCenterDelegate protocol

A delegate for handling foreground push notifications on iOS 10 and higher.

To handle foreground push notifications, add this code to the application(_:didFinishLaunchingWithOptions:)
method:

let delegate = YMPYandexMetricaPush.userNotificationCenterDelegate()
UNUserNotificationCenter.current().delegate = delegate

Properties

presentationOptions Parameters for displaying push notifications.
They are passed to the handler
userNotificationCenter(_:willPresent:withCompletionHandler:).

nextDelegate A delegate to which calls of this protocol will be proxied.

Property descriptions

presentationOptions

var presentationOptions: UNNotificationPresentationOptions

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate?language=objc
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=swift

AppMetrica Push SDK 42

Parameters for displaying push notifications. They are passed to the handler
userNotificationCenter(_:willPresent:withCompletionHandler:).

The delegate invokes the handler if the nextDelegate property is not set or if the object is in nextDelegate
does not respond to the selector.

nextDelegate

var nextDelegate: id<UNUserNotificationCenterDelegate>

A delegate to which calls of this protocol will be proxied.

YMPUserNotificationCenterHandling Class

A delegate for manual handling foreground push notifications on iOS 10 and higher.

Use this delegate if you implement the UNUserNotificationCenterDelegate protocol with custom logic. You
should implement all methods of UNUserNotificationCenterDelegate and call proper methods in
YMPUserNotificationCenterHandling.

The implementation of this delegate is provided by the
YMPYandexMetricaPush.userNotificationCenterDelegate method.

Instance methods

userNotificationCenterWillPresent(_:) You should call this method in your
implementation of userNotificationCenter (_:
willPresent:withCompletionHandler:).

userNotificationCenterDidReceive(_:) You should call this method in your
implementation of userNotificationCenter (_:
didReceive:withCompletionHandler:).

userNotificationCenterOpenSettings(_:) You should call this method in your implementation of
userNotificationCenter (_: openSettingsFor:).

Method descriptions

userNotificationCenterWillPresent(_:)

func userNotificationCenterWillPresent(_ notification: UNNotification?)

You should call this method in your implementation of userNotificationCenter (_:
willPresent:withCompletionHandler:).

Parameters:

notification The instance of UNNotification.

userNotificationCenterDidReceive(_:)

func userNotificationCenterDidReceive(_ response: UNNotificationResponse?)

You should call this method in your implementation of userNotificationCenter (_:
didReceive:withCompletionHandler:).

Parameters:

notification The instance of UNNotificationResponse.

userNotificationCenterOpenSettings(_:)

func userNotificationCenterOpenSettings(for notification: UNNotification?)

AppMetrica. AppMetrica

https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649501-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649501-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/2981869-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unnotification
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649518-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unnotification?language=swift
https://developer.apple.com/documentation/usernotifications/unnotificationresponse?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649501-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/1649501-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unnotificationresponse
https://developer.apple.com/documentation/usernotifications/unnotification?language=swift

AppMetrica Push SDK 43

You should call this method in your implementation of userNotificationCenter (_: openSettingsFor:).

Parameters:

notification The instance of UNNotification.

Enumerations
YMPYandexMetricaPushEnvironment

Contains possible types of environments.

Enumerations

YMPYandexMetricaPushEnvironment

######## ############

YMPYandexMetricaPushEnvironment

enum YMPYandexMetricaPushEnvironment : NSUInteger

Constants Description

YMPYandexMetricaPushEnvironment.Production Environment for production certificates.

YMPYandexMetricaPushEnvironment.Development Environment for production and development certificates.

Configuring push notification interactions tracking

In AppMetrica you can configure tracking interactions with push notifications (such as delivery and dismiss) for
iOS 10 and above.

Collecting delivery statistics

To collect the statistics of delivered push notification, follow these steps:

Step 1. Create Notification Service Extension

1. In Xcode, select File → New → Target.
2. In theiOS extensions section, choose Notification Service Extension from the list and click Next.
3. Enter the name of the extension in the Product Name field and click Finish.

Step 2. Create a shared App Groups group

1. In the Xcode project settings, go to the Capabilities tab.
2. Switch on the App Groups option for the created extension and for the application. To switch between

an extension and an app, go to the project settings panel and click or the drop-down element

.
3. In the App Groups section use the + button to create a group. You will need the group name during further

configuration.
4. Select the group you created for the app and for the extension.

Step 3. Make changes in NotificationService
Objective-C

In the NotificationService.m file add the following code to the corresponding method:

- (void)didReceiveNotificationRequest:(UNNotificationRequest *)request
 withContentHandler:(void (^)(UNNotificationContent * _Nonnull))contentHandler
{
 ...
 [YMPYandexMetricaPush setExtensionAppGroup:appGroup];
 ...
 [YMPYandexMetricaPush handleDidReceiveNotificationRequest:request];

AppMetrica. AppMetrica

https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/2981869-usernotificationcenter?language=swift
https://developer.apple.com/documentation/usernotifications/unnotification

AppMetrica Push SDK 44

 ...
}

Swift

In the NotificationService.swift file add the following code to the corresponding method:

func didReceive(_ request: UNNotificationRequest, withContentHandler contentHandler: @escaping
 (UNNotificationContent) -> Void) {
 ...

 if let bestAttemptContent = bestAttemptContent {
 ...
 YMPYandexMetricaPush.setExtensionAppGroup(appGroup)
 ...
 YMPYandexMetricaPush.handleDidReceive(request)
 ...
 }
}

appGroup — the name of the shared App Groups group.

Step 4. Configure handling of push notifications.
Objective-C

Add the following code to the corresponding implementation of the UIApplicationDelegate method:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Activating AppMetrica.
 ...
 [YMPYandexMetricaPush setExtensionAppGroup:appGroup];
 ...
 [YMPYandexMetricaPush handleApplicationDidFinishLaunchingWithOptions:launchOptions];
 ...
}

Swift
Add the following code to the corresponding implementation of the AppDelegate method:

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey :Any]? = nil) -> Bool
{
 // Activating AppMetrica.
 ...
 YMPYandexMetricaPush.setExtensionAppGroup(appGroup)
 ...
 YMPYandexMetricaPush.handleApplicationDidFinishLaunching(options: launchOptions)
 ...
}

appGroup — the name of the shared App Groups group.

Collecting push notification dismiss interactions

To collect the statistics of dismiss interactions of push notifications, set the following option for the
UNNotificationCategory category:
Objective-C

options:UNNotificationCategoryOptionCustomDismissAction

Swift

options: UNNotificationCategory.customDismissAction

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Uploading attached files

Note:

AppMetrica. AppMetrica

AppMetrica Push SDK 45

You can add attachments in the Push API using the Sending push messages operation (the attachments
parameter).

Configure uploading attached files in push notifications by calling the
downloadAttachmentsForNotificationRequest method (objective-c/swift):

Objective-C

@implementation NotificationService

- (void)didReceiveNotificationRequest:(UNNotificationRequest *)request withContentHandler:(void (^)
(UNNotificationContent * _Nonnull))contentHandler {
 self.contentHandler = contentHandler;
 self.bestAttemptContent = [request.content mutableCopy];

 [YMPYandexMetricaPush setExtensionAppGroup:@"EXTENSION_AND_APP_SHARED_APP_GROUP_NAME"];
 [YMPYandexMetricaPush handleDidReceiveNotificationRequest:request];

 [YMPYandexMetricaPush downloadAttachmentsForNotificationRequest:request
 callback:^(NSArray<UNNotificationAttachment *>
 *attachments, NSError *error) {
 if (error != nil) {
 NSLog(@"Error: %@", error);
 }
 [self
 completeWithBestAttemptAndAttachments:attachments];
 }];
}

- (void)serviceExtensionTimeWillExpire {
 [self completeWithBestAttemptAndAttachments:nil];
}

- (void)completeWithBestAttemptAndAttachments:(NSArray<UNNotificationAttachment *> *)attachments
{
 @synchronized (self) {
 if (self.contentHandler != nil) {
 if (attachments != nil) {
 self.bestAttemptContent.attachments = attachments;
 }
 self.contentHandler(self.bestAttemptContent);
 self.contentHandler = nil;
 }
 }
}

@end

Swift

class NotificationService: UNNotificationServiceExtension {

 private var contentHandler: ((UNNotificationContent) -> Void)?
 private var bestAttemptContent: UNMutableNotificationContent?
 private let syncQueue = DispatchQueue(label: "NotificationService.syncQueue")

 override func didReceive(_ request: UNNotificationRequest, withContentHandler contentHandler: @escaping
 (UNNotificationContent) -> Void) {
 self.contentHandler = contentHandler
 self.bestAttemptContent = (request.content.mutableCopy() as? UNMutableNotificationContent)

 // ...

 YMPYandexMetricaPush.downloadAttachments(for: request) { attachments, error in
 if let error = error {
 print("Error: \(error)")
 }
 self.completeWithBestAttempt(attachments: attachments)
 }
 }

 override func serviceExtensionTimeWillExpire() {
 completeWithBestAttempt(attachments: nil)
 }

 func completeWithBestAttempt(attachments: [UNNotificationAttachment]?) {
 syncQueue.sync {
 if let contentHandler = contentHandler, let bestAttemptContent = bestAttemptContent {
 if let attachments = attachments {
 bestAttemptContent.attachments = attachments
 }
 contentHandler(bestAttemptContent)
 self.bestAttemptContent = nil
 self.contentHandler = nil
 }
 }
 }

}

AppMetrica. AppMetrica

AppMetrica Push SDK 46

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Configuring an iOS application to send push notifications

The Universal Push Notification Client SSL Certificate is required for sending push notifications to iOS apps. To
get this certificate, you need to specify your app's identifier (App ID). You can create one in the Apple Developer
Console.

If you already have an App ID, request a certificate.

Step 1. Request a certificate

1. Open Keychain Access on your computer.
2. Go to Keychain Access → Certificate Assistant → Request a Certificate From a Certificate Authority

and enter the required information. Pay attention to the password. You will need it when setting up the
certificate in the AppMetrica interface.

3. Under Request is, enable the Saved to disk option and click Continue.
4. Save the request file on your computer and click Done.

Step 2. Get a certificate

1. In the Apple Developer Console, go to Certificates, Identifiers & Profiles.
2. In the Certificates menu, select All and go to the Production section.
3. Enable the Apple Push Notification service SSL (Sandbox & Production) option and click Continue.
4. In the App ID drop-down list, select the app ID that needs a certificate, and click Continue. The selected App

ID must match your bundle ID.
5. Since the certificate request has already been sent, click Continue.
6. Click Choose File. In the window that opens, select the certificate request file (for example,

example.certSigningRequest) and click Choose, then Continue.
7. Click Download to download the certificate. Then click Done.
8. Double-click the file to install the certificate.

Step 3. Export a Private Key from the installed certificate

1. Open Keychain Access on your computer and choose Certificates in the menu.
2. In the list, select the certificate that you installed.
3. Choose File → Export Items in the menu. Then enter a name for the file to export and set the format to

Personal Information Exchange (P12). Click Save.
4. In Password, set a password for the key and click OK. If you don't set a password, the certificate won't be

accepted in the AppMetrica interface.
5. To activate the export, enter the password for your computer. Then click Allow. The P12 file is saved on your

computer.

Step 4. Use the Private Key in AppMetrica

1. In the AppMetrica interface, go to the Applications section and select the app that you want to run push
campaigns for.

2. In the menu on the left, select Settings.
3. Go to the Push notifications tab.
4. Under iOS, click Choose file (next to Universal Push Notification Client SSL Certificate).
5. In the window that opens, select the key file in P12 format and upload it.
6. In Password, enter the password you set when saving the key (step 3).

AppMetrica. AppMetrica

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html
https://developer.apple.com/account/ios/certificate
https://appmetrica.yandex.com/application/list

AppMetrica Push SDK 47

See also
Connecting the AppMetrica Push SDK on page 24
Launching a push campaign

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Changelog

Version 1.3.0

Released July 1, 2022

• Added the YMPYandexMetricaPush.handleSceneWillConnectToSession method (Objective-C |
Swift) to work with UIScene (with iOS 13 or higher).

Version 1.1.1

Released September 29, 2021

• Added support for AppMetrica SDK 4.0.0.

Version 1.0.0

Released 13 July 2021

• The minimum supported iOS version is 9.0 or later.
• The library is now delivered only as an XCFramework, which caused the following changes:

• The minimum supported version of CocoaPods is 1.10 and Carthage is 0.38. These versions now support
XCFrameworks.

• Added a library version for iOS simulators that are run on Apple Silicon M1 Macs (ios-arm64-simulator).
• Added Push SDK distribution using Swift Package Manager. For more information, see Installation and

initialization.

Version 0.9.2

Released 12 July 2021

• Feature added to upload attached files in push notifications using the
downloadAttachmentsForNotificationRequest method for iOS 10 and higher. See an example of integration in
the article Uploading attached files.

Version 0.8.0

Released 26 April 2019

• Added the feature for manual push notification tracking with the custom UNUserNotificationCenterDelegate
implementation:

• Added the +userNotificationCenterHandler method.
• Added the YMPUserNotificationCenterHandling protocol.

Version 0.7.2

Released 27 November 2018

• Fixed an issue in the dynamic framework.

Version 0.7.1

Released 19 November 2018

AppMetrica. AppMetrica

https://developer.apple.com/documentation/uikit/uiscene
https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate?language=objc

AppMetrica Push SDK 48

• Added a proxy delegate for userNotificationCenter:openSettingsForNotification:
(YMPUserNotificationCenterDelegate).

• Fixed crash on setting a nil token to the +setDeviceTokenFromData: method.
• Added support for AppMetrica SDK 3.4.0.

Version 0.7.0

Released 31 August 2018

• Added the tracking of the shows/dismisses of the push notifications for iOS 10 and higher.

Version 0.6.0

Released 20 April 2018

• Added support for AppMetrica SDK 3.0.0.

Version 0.5.1

Released 21 March 2018

• Fixed crash when opening URL from push notification.
• Fixed a bug that occurs when a URL of the same push notification is opened more than once.

Version 0.5.0

Released 26 October 2017

• Added the in-app notifications support for iOS 10 and higher. Requires additional integration (Objective-C /
Swift).

• Added method for identification of push notifications related to AppMetrica Push SDK (Objective-C / Swift).
• Added method for sending APNs environment with device token (Objective-C / Swift).

Version 0.4.0

Released 24 November 2016

• Links from push notifications are now opened.
• Added a dynamic framework.
• The DynamicDependencies framework has been changed to Dynamic.
• The StaticDependencies framework has been changed to Static.

Version 0.3.0

Released 10 October 2016

• Integrated with the AppMetrica Mobile SDK library.

Windows

Connecting the AppMetrica Push SDK

Attention: We discontinued the development of new versions of the AppMetrica Windows SDK.

You can use the Windows SDK for mobile and desktop applications (developed on the UWP 10 platform).

Before using the AppMetrica Push SDK, you need to enable and initialize the AppMetrica SDK version 3.2.0 or
higher.

Step 1. Download the AppMetrica Push SDK library.

AppMetrica. AppMetrica

https://developer.apple.com/documentation/usernotifications/unusernotificationcenterdelegate/2981869-usernotificationcenter?language=objc
http://www.nuget.org/packages/Yandex.Metrica.Push/

AppMetrica Push SDK 49

Step 2. Initialize the library in the application by adding to the App.xaml.cs file the Activate() method call.
Call it in the OnLaunched method implementation of the App.xaml.cs or in the MainPage constructor of your
application:

...
YandexMetricaPush.Activate(AppSid);
...

AppSid — String with the Windows Store security identifier. It consists of the ms-app:// prefix and the identifier
value. For example, ms-app://s-1-15-2-3792079137-3272192291-.....

Note: You can get the AppSid by using the
WebAuthenticationBroker.GetCurrentApplicationCallbackUri().ToString();
method.ToString();.

Step 3. Configure handling the opening of push notifications. You can use either Windows Push Notification
Services or Microsoft Push Notification Service for working with push notifications in the app. Depending on
which service is used, use one of the following methods to configure handling push notifications:

Windows Push Notification Services (WNS)

In the OnLaunched method for the Application class, add the ProcessApplicationLaunch method call for the
YandexMetricaPush class:

protected override void OnLaunched(LaunchActivatedEventArgs e) {
 YandexMetricaPush.ProcessApplicationLaunch(e);
 ...
}

Microsoft Push Notification Service (MPNS)

In the OnNavigatedTo method for the Page class (the start page specified in the push notification parameters), add the
ProcessApplicationLaunch method call for the YandexMetricaPush class:

protected override void OnNavigatedTo(NavigationEventArgs e) {
 YandexMetricaPush.ProcessApplicationLaunch(e);
 ...
}

See also
Configuring a Windows application to send push notifications on page 49

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Configuring a Windows application to send push notifications

Attention: We discontinued the development of new versions of the AppMetrica Windows SDK.

This section explains the steps for setting up the application with AppMetrica Push SDK on Windows.

Step 1. Register your app in the dashboard

1. In the Windows Dev Center, go to Dashboard → Submit your app.
2. Click App name. Then enter the name of your app and click Reserve name. The name must be unique.

Step 2. Get the identity for your app

1. Go to the Dashboard and choose the app.
2. Go to the Services section. Under Push notifications, click Get started.
3. Under Windows Push Notification Services (WNS) and Microsft Azure Mobile Apps, click the Live

Services site link. In the menu on the left, choose App identity.

AppMetrica. AppMetrica

https://msdn.microsoft.com/ru-ru/library/windows/apps/windows.security.authentication.web.webauthenticationbroker.getcurrentapplicationcallbackuri.aspx
https://msdn.microsoft.com/ru-ru/library/windows/apps/windows.security.authentication.web.webauthenticationbroker.getcurrentapplicationcallbackuri.aspx
https://msdn.microsoft.com/ru-ru/windows/uwp/controls-and-patterns/tiles-and-notifications-windows-push-notification-services--wns--overview
https://msdn.microsoft.com/ru-ru/windows/uwp/controls-and-patterns/tiles-and-notifications-windows-push-notification-services--wns--overview
https://msdn.microsoft.com/en-us/library/windows/apps/ff402558(v=vs.105).aspx
https://msdn.microsoft.com/ru-ru/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
https://msdn.microsoft.com/ru-ru/library/windows/apps/windows.ui.xaml.application.aspx
https://msdn.microsoft.com/ru-ru/library/windows/apps/windows.ui.xaml.controls.page.onnavigatedto.aspx
https://msdn.microsoft.com/ru-ru/library/windows/apps/windows.ui.xaml.controls.page.aspx
https://developer.microsoft.com/en-us/windows

AppMetrica Push SDK 50

4. Note the Application Secrets and Package SID fields. You will need these values for configuring AppMetrica.

If you use Windows Push Notification Services, these values are also necessary for associating your project
with the store in the dashboard. Add these values to your project manifest in one of the following ways:

• Automatically in Visual Studio.
• Manually in the manifest code.

Step 3. Configure AppMetrica

1. In the AppMetrica interface, go to the Applications section and select the app that you want to run push
campaigns for.

2. In the menu on the left, select Settings.
3. Go to the Push notifications tab.
4. Under Windows, enter the values of Application Secrets and Package SID that you copied from the

Windows Dev Center interface in the Client secret and Security ID fields. Changes are saved automatically.

See also
Connecting the AppMetrica Push SDK on page 48
Launching a push campaign

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Changelog

Version 0.3.1

Attention: We discontinued the development of new versions of the AppMetrica Windows SDK.

Released 25 October 2017

• Integrated with the AppMetrica SDK library (3.5.0).

Plugins

Unity

Installation and initialization

AppMetrica Push Unity is a plugin for the Unity3d game platform that includes support for the AppMetrica Push
SDK for the Android and iOS platforms.

Before using the AppMetrica Push Unity plugin, you need to enable and initialize the AppMetrica Unity plugin
version 4.0.0 or later.

Attention: To update the plugin, delete the Assets/AppMetricaPush directory and import the new
plugin version (pay attention to the Android configuration).

Integrating the plugin

Note:

The plugin uses the External Dependency Manager for Unity to resolve dependencies.

Step 1. Download the AppMetrica Push Unity plugin.

Step 2. Add the plugin to the project — open the project in Unity Editor and import the
AppMetricaPush.unitypackage plugin (Assets → Import Package → Custom Package).

AppMetrica. AppMetrica

https://msdn.microsoft.com/en-us/windows/uwp/controls-and-patterns/tiles-and-notifications-windows-push-notification-services--wns--overview
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-windows-store-dotnet-get-started-push
https://appmetrica.yandex.com/application/list
http://docs.unity3d.com/
https://github.com/googlesamples/unity-jar-resolver
https://github.com/yandexmobile/metrica-push-plugin-unity

AppMetrica Push SDK 51

Step 3. Open the Assets/AppMetricaPush/ folder and drag the AppMetrica prefab to the project's main
stage.

AppMetrica. AppMetrica

AppMetrica Push SDK 52

If the plugin is integrated this way, the AppMetricaPush script on the added prefab automatically initializes the
AppMetrica Push SDK.

The added AppMetricaPush prefab is a singleton. It isn't deleted when switching to a new Unity stage, and it
deletes other objects that the AppMetricaPush script is installed on.

Configuring the plugin
iOS configuration

To receive push notifications, ask the user for permission. We recommend using the Mobile Notifications Unity package
and request permission according to the instructions.

Note: The AppMetrica Push Unity Plugin uses “swizzling”: it intercepts the execution of certain methods of the
UnityAppController class by using the ObjectiveC runtime. The code is in the AppMetricaPush/Plugins/iOS/
YMPBridge.m file.

AppMetrica. AppMetrica

https://docs.unity3d.com/Packages/com.unity.mobile.notifications@2.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.mobile.notifications@2.0/manual/iOS.html#authorization-request

AppMetrica Push SDK 53

Android configuration
Configuring AndroidManifest.xml

Make changes in the application element in the AndroidManifest.xml file:

<meta-data android:name="ymp_firebase_default_app_id" android:value="APP_ID"/>
<meta-data android:name="ymp_gcm_default_sender_id" android:value="number:SENDER_ID"/>
<meta-data android:name="ymp_firebase_default_api_key" android:value="API_KEY"/>
<meta-data android:name="ymp_firebase_default_project_id" android:value="PROJECT_ID"/>

APP_ID — ID of the app in Firebase. You can find it in the Firebase console: go to the Project settings. In the Your application
section copy the value of the application ID field.

SENDER_ID — The unique ID of the sender in Firebase. You can find it in the Firebase console: go to Project settings → Cloud
Messaging and copy the value of the Sender ID field.

API_KEY — App key in Firebase. You can find it in the current_key field of the google-services.json file. You can
download the file in the Firebase console.

PROJECT_ID — App ID in Firebase. You can find it in the project_id field of the google-services.json file. You can
download the file in the Firebase console.

Note: If you use the AppMetrica Push SDK integration sample, change the package attribute value in the manifest element to
the package id of your application.

There is an example of the file in the Assets/AppMetricaPush/Plugins/Android/ directory (AndroidManifest.xml).

Configuring the location tracking

By default, the AppMetrica Push SDK enables device location tracking.

See also
Configuring an Android application to send push notifications on page 8
Configuring an iOS application to send push notifications on page 46
Launching a push campaign

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Migrating from GCM to Firebase

Since the AppMetrica Push SDK version 0.2.0, it uses the Firebase Cloud Messaging (FCM) service to send
push messages on the Android platform.

This section explains the steps for migrating the application from Google Cloud Messaging to Firebase Cloud
Messaging.

Step 1. Import a project

Import a Google project (if you used Google APIs to create a project):

1. Go to the Firebase console.
2. Click the Add project button.
3. In the drop-down list, select the name of the project you are planning to run push campaigns for.
4. Select the country your organization is officially registered in and click Add Firebase.
5. Click Add Firebase to your Android app and follow the instructions.

Step 2. Configuring your app

Edit the AndroidManifest.xml file:

AppMetrica. AppMetrica

https://console.firebase.google.com/
https://console.firebase.google.com/
https://support.google.com/firebase/answer/7015592
https://console.firebase.google.com/
https://github.com/yandexmobile/metrica-push-plugin-unity/tree/master/YandexMetricaPushPluginSample
https://console.firebase.google.com/

AppMetrica Push SDK 54

1. Rename ymp_gcm_project_number to ymp_gcm_default_sender_id and get the following result:

<meta-data android:name="ymp_gcm_default_sender_id" android:value="number:SENDER_ID"/>

SENDER_ID — The unique ID of the sender in Firebase. You can find it in the Firebase console: go to Project
settings → Cloud Messaging and copy the value of the Sender ID field.

2. Add the following to the application element:

<meta-data android:name="ymp_firebase_default_app_id" android:value="APP_ID"/>

APP_ID — ID of the app in Firebase. You can find it in the Firebase console: go to the Project settings. In the
Your application section copy the value of the application ID field.

Contact support

If you didn't find the answer you were looking for, you can use the feedback form to submit your question. Please describe
the problem in as much detail as possible. Attach a screenshot if possible.

Changelog

Version 1.1.0

Released August 15, 2022

• Updated versions of the AppMetrica Push SDK (iOS 1.3.0, Android 2.2.0).
• Added support for Unity 2022.1.
• Fixed plugin operation on devices with Android 7 and below due to the

java.lang.NoClassDefFoundError: android.app.NotificationChannel error.

Version 1.0.0

Released May 27, 2022

• Updated the AppMetrica Push SDK versions (iOS 1.1.1, Android 2.1.1).
• Discontinued support for the AppMetrica Unity plugin lower than version 4.0.0.
• Added support for the External Dependency Manager for Unity to resolve dependencies.

Version 0.2.0

Released 11 July 2018

• Updated AppMetrica Push SDK versions (iOS 0.6.0, Android 1.1.0).
• Stopped supporting AppMetrica Unity plugin lower than version 3.0.0.
• Stopped supporting iOS 7.

Version 0.1.1

Released 19 November 2017

• Updated AppMetrica Push SDK versions (iOS 0.5.0, Android 0.6.1).
• Added support for Android 8.
• Added the in-app notifications support for iOS 10 and higher.
• Update the GCM and support libraries versions.
• The minimum version of the Android API is 14.

Version 0.1.0

Released 31 January 2017

• Integration with the AppMetrica SDK for the iOS and Android platforms.

AppMetrica. AppMetrica

https://console.firebase.google.com/
https://console.firebase.google.com/
https://github.com/googlesamples/unity-jar-resolver

AppMetrica Push SDK 55

Flutter

About the plugin

The AppMetrica Push SDK for Flutter plugin lets you send push notifications to complex user segments, flexibly
set up the time, and run A/B testing of your campaigns. The number of push notifications is unlimited.

Key features

• Flexible targeting. Use all data about your users processed by AppMetrica to create complex segments for
personalized communication.

• A/B testing. Try different combinations of push content for the same audience or test responses from different
user segments.

• Custom push notification content. You can use various combinations of texts, images, icons, and calls to
action.

• Planning. All push notifications can be scheduled for a specific time according to the recipients' time zone.
• Push API. Send individual notifications using custom triggers, including events outside the app.
• Detailed statistics. To carefully evaluate the effectiveness of your push campaign, you can track how each

push notification affected user behavior and compare your push campaign with your key indicators.

Installation and initialization

To integrate AppMetrica Push SDK into Flutter, use the AppMetrica Push SDK for Flutter plugin:

1. Install the AppMetrica Push SDK plugin in your project. From the root of the project, run the command:

flutter pub add appmetrica_push_plugin

After adding the plugin, you'll see a line with the following dependency in the pubspec.yaml file:

dependencies:
 appmetrica_push_plugin: ^0.3.0

2. Add appmetrica_plugin and appmetrica_push_plugin import:

import 'package:appmetrica_plugin/appmetrica_plugin.dart';
import 'package:appmetrica_push_plugin/appmetrica_push_plugin.dart';

3. Initialize the AppMetrica SDK library using AppMetrica.activate and your API key:

AppMetrica.activate(AppMetricaConfig("insert_your_api_key_here"));

4. Initialize the AppMetrica Push SDK using AppMetricaPush.activate and your API key:

AppMetricaPush.activate();

5. To complete the integration of sending push notifications, use the documentation for each native platform:
Android and iOS.

iOS configuration

1. Add the SSL certificate to AppMetrica according to the instructions.
2. Add Capability Push Notifications to your XCode project.

Changelog
Version 0.3.0

Released June 16, 2023

• The native android part of the plugin was rewritten on java due to the problems with kotlin versions.
• Updated dev_dependencies.

Version 0.2.0

Released August 29, 2022

• Updated versions of the AppMetrica Push SDK (iOS 1.3.0, Android 2.2.0).

AppMetrica. AppMetrica

https://pub.dev/packages/appmetrica_push_plugin
https://pub.dev/packages/appmetrica_push_plugin

AppMetrica Push SDK 56

• Updated the appmetrica_plugin version to 1.0.1.

Version 0.1.0

Released March 15, 2022

Initial release. Supports most of the features available in the AppMetrica Push SDK. Native SDK versions:

• Android: 2.1.1.
• iOS: 1.1.

Cordova (not supported)

Installation and initialization

Attention:

Support and development of the plugin has been stopped. We do not guarantee the SDK will work
correctly.

AppMetrica Push Cordova is a plugin for the Cordova (PhoneGap) platform that includes support for the
AppMetrica Push SDK for Android and iOS through the JavaScript interface.

Before using the AppMetrica Push Cordova plugin, you need to enable and initialize the AppMetrica Cordova
plugin version 0.2.0 or later.

Integrating the plugin

Step 1. Add the supported platforms to your project

Step 2. Add the plugin to the project by using one of the following console commands:

cordova plugin add yandex-appmetrica-push-plugin-cordova

or

cordova plugin add https://github.com/yandexmobile/metrica-push-plugin-cordova.git

When you add another supported platform to the project, the plugin automatically downloads the corresponding
SDK library.

Step 3. (For Android projects only) Add the following to the application element of the
AndroidManifest.xml file:

<meta-data android:name="ymp_gcm_project_number" android:value="number:SENDER_ID"/>

For example:

1. Add the cordova-custom-config plugin:

cordova plugin add cordova-custom-config

2. Make the following changes to the config.xml file of the android project:

<config-file parent="./application" target="AndroidManifest.xml">
 <meta-data android:name="ymp_gcm_project_number" android:value="number:SENDER_ID" />
</config-file>

What is SENDER_ID?

SENDER_ID — Unique app identifier in GCM (Google Cloud Messaging).

Connection examples

In the example below:

• The JavaScript object with the configuration is created.
• The AppMetrica Cordova plugin is activated.
• The AppMetrica Push Cordova plugin is initialized.

AppMetrica. AppMetrica

http://cordova.apache.org/
https://cordova.apache.org/docs/en/latest/guide/cli/index.html#add-platforms

AppMetrica Push SDK 57

• The push token of the device is output to the log.

document.addEventListener('deviceready', onDeviceReady, false);
function onDeviceReady () {
 var configuration = {
 apiKey: 'Your API key here'
 }
 window.appMetrica.activate(configuration);

 window.appMetricaPush.init();
 window.appMetricaPush.getToken(function (token) {
 console.log("Token: " + token);
 });
}

What is the API key?

The API key is a unique application identifier that is issued in the AppMetrica web interface during app registration.

Make sure you have entered it correctly.

API methods

In the code, use window.appMetricaPush for accessing AppMetrica Push.

init()

init()

Initializes the AppMetrica Push Cordova plugin.

getToken()

getToken(function (token) {
 // Token has the String type.
})

Returns the push token of the device.

Related information
Integration examples

Changelog

Attention:

Support and development of the plugin has been stopped. We do not guarantee the SDK will work
correctly.

Version 0.1.0

Released 27 December 2017

• Integration with AppMetrica SDKs (iOS 0.5.0, Android 0.6.1).
• Added the plugin integration example.

AppMetrica. AppMetrica

https://appmetrica.yandex.com/application/new
https://github.com/yandexmobile/metrica-plugin-cordova/tree/master/sample
https://github.com/yandexmobile/metrica-push-plugin-cordova/tree/master/sample/cordova

	Contents
	Push SDK integration
	
	Android
	Installation and initialization
	Step 1. Prepare your app
	Step 2. Enable the library
	Step 3. Initialize the library
	Step 4. (Optional) Configure Silent Push Notifications
	Step 5. (Optional) Enable push tokens update
	Sending additional information
	Detecting the application launch via push notification
	Setting the default icon
	

	Configuring your app
	For using Firebase
	To use Huawei Mobile Services (HMS)
	

	Using with other push services
	Using with other Firebase push services
	Step 1. Make changes in AndroidManifest.xml
	Step 2. Add push notifications handling
	Step 3. Add push token processing

	Using with other HMS push services
	Step 1. Make changes in AndroidManifest.xml
	Step 2. Add push notifications handling
	Step 3. Add push token processing

	

	Reference
	com.yandex.metrica.push
	Interfaces
	TokenUpdateListener
	Method descriptions

	Classes
	YandexMetricaPush
	Method descriptions
	Field descriptions

	com.yandex.appmetrica.push.firebase
	Classes
	FirebasePushServiceControllerProvider
	Constructor descriptions

	com.yandex.appmetrica.push.hms
	Classes
	HmsPushServiceControllerProvider
	Constructor descriptions

	MetricaHmsMessagingService
	Method descriptions

	com.yandex.metrica.push.firebase
	Classes
	MetricaMessagingService
	Method descriptions

	Migrating from GCM to Firebase
	

	Changelog
	Version 2.3.2
	Version 2.3.1
	Version 2.2.0
	Version 2.1.1
	Version 2.1.0
	Version 2.0.0
	Version 1.14.0
	Version 1.13.0
	Version 1.12.0
	Version 1.11.1
	Version 1.11.0
	Version 1.10.0
	Version 1.5.1
	Version 1.5.0
	Version 1.4.1
	Version 1.4.0
	Version 1.3.0
	Version 1.2.0
	Version 1.1.0
	Version 1.0.0
	Version 0.6.1
	Version 0.5.0
	Version 0.4.0
	Version 0.3.0

	iOS
	Installation and initialization
	Step 1. Enable the library
	Step 2. Register your app in the Apple Push Notification Service (APNs)
	Step 3. Register a device token for your app
	Step 4. Configure handling the opening of push notifications.
	Step 5. (Optional) Enable push tokens update
	Step 6. (Optional) Configure uploading attached files
	Sending additional information
	Defining the recipient of a notification
	

	Objective-C reference
	Classes
	YMPYandexMetricaPush
	Method descriptions

	Protocols
	YMPUserNotificationCenterDelegate
	Property descriptions

	YMPUserNotificationCenterHandling
	Method descriptions

	Enumerations
	YMPYandexMetricaPushEnvironment
	Описание перечислений

	Swift reference
	Classes
	YMPYandexMetricaPush
	Method descriptions

	Protocols
	YMPUserNotificationCenterDelegate
	Property descriptions

	YMPUserNotificationCenterHandling
	Method descriptions

	Enumerations
	YMPYandexMetricaPushEnvironment
	Описание перечислений

	Configuring interaction tracking
	Collecting delivery statistics
	Collecting push notification dismiss interactions
	

	Uploading attached files
	

	Configuring your app
	

	Changelog
	Version 1.3.0
	Version 1.1.1
	Version 1.0.0
	Version 0.9.2
	Version 0.8.0
	Version 0.7.2
	Version 0.7.1
	Version 0.7.0
	Version 0.6.0
	Version 0.5.1
	Version 0.5.0
	Version 0.4.0
	Version 0.3.0

	Windows
	Installation and initialization
	

	Configuring your app
	

	Changelog
	Version 0.3.1

	Plugins
	Unity
	Installation and initialization
	Integrating the plugin
	Configuring the plugin
	

	Migrating from GCM to Firebase
	

	Changelog
	Version 1.1.0
	Version 1.0.0
	Version 0.2.0
	Version 0.1.1
	Version 0.1.0

	Flutter
	About the plugin
	Installation and initialization
	Changelog
	Version 0.3.0
	Version 0.2.0
	Version 0.1.0

	Cordova (not supported)
	Installation and initialization
	Integrating the plugin
	Connection examples
	API methods

	Changelog
	Version 0.1.0

