Quick start
Integration

10.07.2024

Yandex

Quick start. Integration. Version 2.0

Document build date: 10.07.2024

This volume is a part of Yandex technical documentation.
© 2008—2024 Yandex LLC. All rights reserved.

Copyright Disclaimer

Yandex (and its applicable licensor) has exclusive rights for all results of intellectual activity and equated to them means of individualization, used
for development, support, and usage of the service Quick start. It may include, but not limited to, computer programs (software), databases, images,
texts, other works and inventions, utility models, trademarks, service marks, and commercial denominations. The copyright is protected under
provision of Part 4 of the Russian Civil Code and international laws.

You may use Quick start or its components only within credentials granted by the Terms of Use of Quick start or within an appropriate Agreement.

Any infringements of exclusive rights of the copyright owner are punishable under civil, administrative or criminal Russian laws.

Contact information
Yandex LLC

https://www.yandex.com

Ten.: +7 495 739 7000

Email: pr@yandex-team.ru

16 L'va Tolstogo St., Moscow, Russia 119021

https://www.yandex.com

Contents

ENabling the PlUGIN... ... e e e e e e e

7o I 05010 F= £
[27= T o aT=T = To [TSP
INTEISHLIAl AAS......ccoeiiei e et e e e et e e e e e e e et e e e e e e e tab e e e eee et e e e e eearaaaans
R TZ= 1 {0 [=To JNF= o [TSR PRRPRR

Enabling the Mobile Ads Unity plugin

Enabling the Mobile Ads Unity plugin

ﬁ Warning:

This is an archived version of the documentation. Actual documentation for all platforms can be found
here.

Mobile Ads Unity is a plugin for the Unity3d game platform that supports the Yandex Mobile Ads SDK.
Note:

1. To load ads of any type, you need iOS 12.0 or later.
2. To run the SDK, you need the Target API Level 31 or higher.

Integrating the plugin

Note: yandex-ads-unity-plugin runs only in Android and iOS environments. You can't use it in the Unity
editor.

Lite version

1. Download the directory yandex-ads-unity-plugin and add the package yandex-mobileads-
lite-2.9.0.unitypackage.
How to add a package
Select a plugin (Assets — Import Package — Custom Package), then click Import.

2. Add the Google resolver: download the directory unity-jar-resolver and add the package external-
dependency-manager-latest.unitypackage.

How to add a package
Select a plugin (Assets — Import Package — Custom Package), then click Import.

3. Use the Google resolver to install dependencies: enable auto-resolve or select Assets — External Dependency
Manager — Android Resolver — Resolve in the menu.

4. To test the Mobile Ads Unity plugin, use a sample script from the samples directory in the yandex-ads-unity-
plugin repository. Copy the script to the project directory and add it as a Component to the main camera.
Downgrading the Target API Level

To downgrade the Target API Level to 30, add the explicit downgrade to mainTemplate.gradle and
launcherTemplate.gradle (if you use launcherTemplate in the project):

configurations.all {
resolutionStrategy {
force 'androidx.core:core:1.6.0'
force 'androidx.core:core-ktx:1.6.0'

}

However, we recommend that you upgrade to the Target API Level 31, because Google has restrictions on
releasing updates for applications running an outdated version of the Target API Level. Learn more in the article.

Ad formats

Banner ads

ﬁ Warning:

This is an archived version of the documentation. Actual documentation for all platforms can be found
here.

A banner is a configurable ad that covers part of the screen and reacts to clicks.

https://ads.yandex.com/helpcenter/en/dev/platforms
https://docs.unity3d.com/Manual/
https://github.com/yandexmobile/yandex-ads-unity-plugin
https://github.com/googlesamples/unity-jar-resolver
https://github.com/yandexmobile/yandex-ads-unity-plugin
https://github.com/yandexmobile/yandex-ads-unity-plugin
https://developer.android.com/google/play/requirements/target-sdk
https://ads.yandex.com/helpcenter/en/dev/platforms

Ad formats

Adding Banner to the project
To display a banner in your app, create a Banner object in the script (in C#) that is attached to the GameObject.

ﬂéing YandexMobileAds;
using YandexMobileAds.Base;

public class YandexMobileAdsBannerDemoScript : MonoBehaviour
private Banner banner;
ﬁéivate void RequestBanner()
string adUnitId = "YOUR_adUnitId";

banner = new Banner(adUnitId, AdSize.BANNER_320x50, AdPosition.BottomCenter);

}

The Banner constructor contains the following parameters:

» AdUnitId — A unique identifier that is issued in the Partner interface and looks like this: R-M-XXXXXX-Y.
* AdSize — The size of the banner you want to display.
* AdPosition — The position on the screen.

Loading ads

After creating and configuring the object of the Banner class, load ads. To load an ad, use the LoadAd method,
which takes the AdRequest object as an argument.

banner.LoadAd(request);

About loading ads
Use the AdRequest object to transmit the code received in the Adfox interface (for more information, see Help for Adfox):

)}.Code from the Adfox interface for working with direct campaigns.
private Dictionary<string, string> CreateAdfoxParameters()

Dictionary<string, string> parameters = new Dictionary<string, string>()

{"adf_ownerid", "<example>"},
{"adf_p1", "<example>"},
{"adf_p2", "<example>"},

{ T

adf_pt", "<example>"},
b

return parameters;

private void RequestBanner()

AdRequest request = new AdRequest.Builder()
.WithParameters(CreateAdfoxParameters())
.Build();

banner.LoadAd(request);

Banner ad events

To track events that occur in banner ads, register a delegate for the appropriate EventHandler, as shown
below:

ﬁfivate void RequestBanner ()

banner.0OnAdLoaded += HandleAdLoaded;

banner .0OnAdFailedTolLoad += HandleAdFailedTolLoad;
banner.0OnReturnedToApplication += HandleReturnedToApplication;
banner.OnLeftApplication += HandleLeftApplication;
banner.0OnAdClicked += HandleAdClicked;

https://yandex.ru/support/adfox-sites/codes/get-code.html

Ad formats

banner.OnImpression += HandleImpression;
}
public void HandleAdLoaded(object sender, EventArgs args)
MonoBehaviour.print("HandleAdLoaded event received");
banner.Show() ;
public void HandleAdFailedTolLoad(object sender, AdFailureEventArgs args)

MonoBehaviour.print("HandleAdFailedToLoad event received with message: " + args.Message);

}
public void HandlelLeftApplication(object sender, EventArgs args)

—~

MonoBehaviour.print("HandleLeftApplication event received");

ublic void HandleReturnedToApplication(object sender, EventArgs args)

MonoBehaviour.print("HandleReturnedToApplication event received");

ublic void HandleAdLeftApplication(object sender, EventArgs args)

MonoBehaviour.print("HandleAdLeftApplication event received");

ublic void HandleAdClicked(object sender, EventArgs args)

MonoBehaviour.print("HandleAdClicked event received");

ublic void HandleImpression(object sender, ImpressionData impressionData)

AT ~ AT ~ ~AT ~ ~T

var data = impressionData == null ? "null" : impressionData.rawData;
MonoBehaviour.print("HandleImpression event received with data: " + data);

Clearing ads

When an ad object is no longer needed, you can delete it. To do this, call the Destroy method:

banner.Destroy();

Interstitial ads
Warning:

This is an archived version of the documentation. Actual documentation for all platforms can be found
here.

An interstitial ad is a configurable ad that covers the entire screen and responds to clicks.

Adding Interstitial to the project

To enable advertising, create an Interstitial object in the script (in C#) that is attached to the GameObject.

ﬁéing YandexMobileAds;
using YandexMobileAds.Base;
public class YandexMobileAdsInterstitialDemoScript : MonoBehaviour
private Interstitial interstitial;
ﬁfivate void RequestInterstitial()
string adUnitId = "YOUR_adUnitId";

interstitial = new Interstitial(adUnitId);

The Interstitial constructor contains the adUnitId parameter, which is a unique identifier that is assigned
in the Partner interface and looks like this: R-M-XXXXXX-Y.

https://ads.yandex.com/helpcenter/en/dev/platforms

Ad formats 7

Loading ads

After creating and configuring the object of the Interstitial class, load ads. To load an ad, use the LoadAd
method, which takes the AdRequest object as an argument.

interstitial.LoadAd(request);
About loading ads
Use the AdRequest object to transmit the code received in the Adfox interface (for more information, see Help for Adfox):

// Code from the Adfox interface for working with direct campaigns.
private Dictionary<string, string> CreateAdfoxParameters()

Dictionary<string, string> parameters = new Dictionary<string, string>()

{"adf_ownerid", "<example>"},
{"adf_p1", "<example>"},
{"adf_p2", "<example>"},

{"

adf_pt", "<example>"},
b

return parameters;

private void RequestInterstitial()

AdRequest request = new AdRequest.Builder ()
.WithParameters(CreateAdfoxParameters())
.Build();

interstitial.LoadAd(request);

Displaying ads
After the ad has loaded, you can display it:

ﬁ%ivate void ShowInterstitial()
if (this.interstitial.IsLoaded())
{ interstitial.Show();
else

Debug.Log("Interstitial is not ready yet");

Interstitial ad events

To track events that occur in interstitial ads, register a delegate for the appropriate EventHandler, as shown
below:

ﬁ?ivate void RequestInterstitial()

interstitial.OnInterstitiallLoaded += Handlelnterstitialloaded;
interstitial.OnInterstitialFailedToLoad += HandleInterstitialFailedTolLoad;
interstitial.OnReturnedToApplication += HandleReturnedToApplication;
interstitial.OnLeftApplication += HandleLeftApplication;
interstitial.OnAdClicked += HandleAdClicked;
interstitial.OnInterstitialShown += HandleInterstitialShown;
interstitial.OnInterstitialDismissed += HandleInterstitialDismissed;
interstitial.OnImpression += HandleImpression;
interstitial.OnInterstitialFailedToShow += HandlelInterstitialFailedToShow;

}
public void HandleInterstitiallLoaded(object sender, EventArgs args)

MonoBehaviour.print("HandleInterstitiallLoaded event received");

https://yandex.ru/support/adfox-sites/codes/get-code.html

Ad formats

public void HandleInterstitialFailedTolLoad(object sender, AdFailureEventArgs args)

MonoBehaviour.print(
"HandleInterstitialFailedToLoad event received with message:

+ args.Message);

}
public void HandleReturnedToApplication(object sender, EventArgs args)

MonoBehaviour.print("HandleReturnedToApplication event received");

}
public void HandlelLeftApplication(object sender, EventArgs args)

~

MonoBehaviour.print("HandleLeftApplication event received");

ublic void HandleAdClicked(object sender, EventArgs args)

MonoBehaviour.print("HandleAdClicked event received");

ublic void HandleInterstitialShown(object sender, EventArgs args)

MonoBehaviour.print("HandleInterstitialShown event received");

ublic void HandleInterstitialDismissed(object sender, EventArgs args)

MonoBehaviour.print("HandleInterstitialDismissed event received");

ublic void HandleImpression(object sender, ImpressionData impressionData)

AT ~ AT ~ ~AT ~~ ~T

var data = impressionData == null ? "null" : impressionData.rawData;
MonoBehaviour.print("HandleImpression event received with data: " + data);

public void HandleInterstitialFailedToShow(object sender, AdFailureEventArgs args)

MonoBehaviour.print
"HandleInterstitialFailedToShow event received with message:

+ args.Message);

Clearing ads

When an ad object is no longer needed, you can delete it. To do this, call the Destroy method:

interstitial.Destroy();

Rewarded ads
Warning:

This is an archived version of the documentation. Actual documentation for all platforms can be found
here.

A rewarded ad is a configurable full-screen ad. The user gets a reward for viewing the ad.

Adding a rewarded ad to the project

To enable advertising, create a RewardedAd object in the script (in C#) that is attached to the GameObject.

ﬂéing YandexMobileAds;
using YandexMobileAds.Base;
public class YandexMobileAdsRewardedAdDemoScript : MonoBehaviour
private RewardedAd rewardedAd;
b%ivate void RequestRewardedAd()
string adUnitId = "YOUR_adUnitId";
rewardedAd = new RewardedAd(adUnitId);

https://ads.yandex.com/helpcenter/en/dev/platforms

Ad formats

The RewardedAd constructor contains the adUnitId parameter, a unique identifier that is assigned in the
Partner interface and looks like this: R-M-XXXXXX-Y.
Loading ads

After creating and configuring the object of the RewardedAd class, you need to load ads. To load an ad, use the
LoadAd method, which takes the AdRequest object as an argument.

rewardedAd.LoadAd(request);

About loading ads
Use the AdRequest object to transmit the code received in the Adfox interface (for more information, see Help for Adfox):

// Code from the Adfox interface for working with direct campaigns.
private Dictionary<string, string> CreateAdfoxParameters()

Dictionary<string, string> parameters = new Dictionary<string, string>()

{"adf_ownerid", "<example>"},
{"adf_p1", "<example>"},
{"adf_p2", "<example>"},

{ T

adf_pt", "<example>"},
I

return parameters;

private void RequestRewardedAd()

AdRequest request = new AdRequest.Builder()
.WithParameters(CreateAdfoxParameters())
.Build();

rewardedAd.LoadAd(request) ;

Displaying ads
After the ad has loaded, you can display it:

ﬁfivate void ShowRewardedAd()
if (this.rewardedAd.IsLoaded())
{ rewardedAd.Show() ;
else

Debug.Log("Rewarded Ad is not ready yet");

Rewarded ad events

To track events that occur in a rewarded ad, register a delegate for the appropriate EventHandler, as shown
below:

ﬁ%ivate void RequestRewardedAd()

rewardedAd.OnRewardedAdLoaded += HandleRewardedAdLoaded;
rewardedAd.OnRewardedAdFailedToLoad += HandleRewardedAdFailedToload;
rewardedAd.OnReturnedToApplication += HandleReturnedToApplication;
rewardedAd.OnLeftApplication += HandlelLeftApplication;
rewardedAd.OnAdClicked += HandleAdClicked;
rewardedAd.OnRewardedAdShown += HandleRewardedAdShown;
rewardedAd.OnRewardedAdDismissed += HandleRewardedAdDismissed;
rewardedAd.OnImpression += HandleImpression;

rewardedAd.OnRewarded += HandleRewarded;
rewardedAd.OnRewardedAdFailedToShow += HandleRewardedAdFailedToShow;

https://yandex.ru/support/adfox-sites/codes/get-code.html

Ad formats

10

public void HandleRewardedAdLoaded(object sender, EventArgs args)

MonoBehaviour.print("HandleRewardedAdLoaded event received");

public void HandleRewardedAdFailedTolLoad(object sender, AdFailureEventArgs args)
{

MonoBehaviour.print(
"HandleRewardedAdFailedToLoad event received with message: " + args.Message);

}
public void HandleReturnedToApplication(object sender, EventArgs args)

MonoBehaviour.print("HandleReturnedToApplication event received");

}
public void HandlelLeftApplication(object sender, EventArgs args)

~

MonoBehaviour.print("HandleLeftApplication event received");

ublic void HandleAdClicked(object sender, EventArgs args)

MonoBehaviour.print("HandleAdClicked event received");

ublic void HandleRewardedAdShown(object sender, EventArgs args)

MonoBehaviour.print("HandleRewardedAdShown event received");

ublic void HandleRewardedAdDismissed(object sender, EventArgs args)

MonoBehaviour.print("HandleRewardedAdDismissed event received");

ublic void HandleImpression(object sender, ImpressionData impressionData)

AT ~ AT v~ ~T ~ ~T

var data = impressionData == null ? "null" : impressionData.rawData;
MonoBehaviour.print("HandleImpression event received with data: " + data);

public void HandleRewarded(object sender, Reward args)

+ args.amount + ", type =

MonoBehaviour.print("HandleRewarded event received: amout = + args.type);

public void HandleRewardedAdFailedToShow(object sender, AdFailureEventArgs args)

MonoBehaviour.print(
"HandleRewardedAdFailedToShow event received with message: " + args.Message);

Clearing ads

When an ad object is no longer needed, you can delete it. To do this, call the Destroy method:

rewardedAd.Destroy() ;

	Contents
	Enabling the plugin
	Ad formats
	Banner ads
	Interstitial ads
	Rewarded ads

