scipy.stats.

kstatvar#

scipy.stats.kstatvar(данные, n=2, *, ось=None, nan_policy='propagate', keepdims=False)[источник]#

Возвращает несмещённую оценку дисперсии k-статистики.

См. kstat и [1] для получения дополнительных сведений о k-статистике.

Параметры:
данныеarray_like

Входной массив.

nint, {1, 2}, опционально

По умолчанию равно 2.

осьint или None, по умолчанию: None

Если это целое число, ось входных данных, по которой вычисляется статистика. Статистика каждого среза по оси (например, строки) входных данных появится в соответствующем элементе вывода. Если None, вход будет сведён в одномерный массив перед вычислением статистики.

nan_policy{‘propagate’, ‘omit’, ‘raise’}

Определяет, как обрабатывать входные значения NaN.

  • propagate: если NaN присутствует в срезе оси (например, строке), вдоль которой вычисляется статистика, соответствующая запись вывода будет NaN.

  • omit: NaN будут пропущены при выполнении расчета. Если в срезе оси, вдоль которого вычисляется статистика, остается недостаточно данных, соответствующая запись вывода будет NaN.

  • raise: если присутствует NaN, то ValueError будет вызвано исключение.

keepdimsbool, по умолчанию: False

Если установлено значение True, оси, которые были сокращены, остаются в результате как размерности с размером один. С этой опцией результат будет корректно транслироваться относительно входного массива.

Возвращает:
kstatvarfloat

The n дисперсия k-статистики.

Смотрите также

kstat

Возвращает n-ю k-статистику.

moment

Возвращает n-й центральный момент относительно среднего для выборки.

Примечания

Несмещённые оценки дисперсий первых двух k-статистик даются формулой

\[\begin{split}\mathrm{var}(k_1) &= \frac{k_2}{n}, \\ \mathrm{var}(k_2) &= \frac{2k_2^2n + (n-1)k_4}{n(n - 1)}.\end{split}\]

Начиная с SciPy 1.9, np.matrix входные данные (не рекомендуется для нового кода) преобразуются в np.ndarray перед выполнением вычисления. В этом случае результатом будет скаляр или np.ndarray подходящей формы вместо 2D np.matrix. Аналогично, хотя маскированные элементы маскированных массивов игнорируются, результатом будет скаляр или np.ndarray вместо маскированного массива с mask=False.

Ссылки