scipy.stats.betaprime#
-
scipy.stats.betaprime =
object> [источник]# Бета-прайм непрерывная случайная величина.
Как экземпляр
rv_continuousкласс,betaprimeобъект наследует от него коллекцию общих методов (см. ниже полный список), и дополняет их деталями, специфичными для этого конкретного распределения.Методы
rvs(a, b, loc=0, scale=1, size=1, random_state=None)
Случайные величины.
pdf(x, a, b, loc=0, scale=1)
Функция плотности вероятности.
logpdf(x, a, b, loc=0, scale=1)
Логарифм функции плотности вероятности.
cdf(x, a, b, loc=0, scale=1)
Интегральная функция распределения.
logcdf(x, a, b, loc=0, scale=1)
Логарифм функции кумулятивного распределения.
sf(x, a, b, loc=0, scale=1)
Функция выживания (также определяется как
1 - cdf, но sf иногда более точный).logsf(x, a, b, loc=0, scale=1)
Логарифм функции выживания.
ppf(q, a, b, loc=0, scale=1)
Процентная точка функции (обратная
cdf— процентили).isf(q, a, b, loc=0, scale=1)
Обратная функция выживания (обратная к
sf).moment(order, a, b, loc=0, scale=1)
Нецентральный момент указанного порядка.
stats(a, b, loc=0, scale=1, moments='mv')
Среднее ('m'), дисперсия ('v'), асимметрия ('s') и/или эксцесс ('k').
entropy(a, b, loc=0, scale=1)
(Дифференциальная) энтропия случайной величины.
fit(data)
Оценки параметров для общих данных. См. scipy.stats.rv_continuous.fit для подробной документации по ключевым аргументам.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Ожидаемое значение функции (одного аргумента) относительно распределения.
median(a, b, loc=0, scale=1)
Медиана распределения.
mean(a, b, loc=0, scale=1)
Среднее распределения.
var(a, b, loc=0, scale=1)
Дисперсия распределения.
std(a, b, loc=0, scale=1)
Стандартное отклонение распределения.
interval(confidence, a, b, loc=0, scale=1)
Доверительный интервал с равными площадями вокруг медианы.
Примечания
Функция плотности вероятности для
betaprimeравен:\[f(x, a, b) = \frac{x^{a-1} (1+x)^{-a-b}}{\beta(a, b)}\]для \(x >= 0\), \(a > 0\), \(b > 0\), где \(\beta(a, b)\) является бета-функцией (см.
scipy.special.beta).betaprimeпринимаетaиbв качестве параметров формы.Распределение связано с
betaраспределение следующим образом: Если \(X\) следует бета-распределению с параметрами \(a, b\), затем \(Y = X/(1-X)\) имеет бета-простое распределение с параметрами \(a, b\) ([1]).Бета-прайм распределение — это перепараметризованная версия F-распределения. Бета-прайм распределение с параметрами формы
aиbиscale = sэквивалентно F-распределению с параметрамиd1 = 2*a,d2 = 2*bиscale = (a/b)*s. Например,>>> from scipy.stats import betaprime, f >>> x = [1, 2, 5, 10] >>> a = 12 >>> b = 5 >>> betaprime.pdf(x, a, b, scale=2) array([0.00541179, 0.08331299, 0.14669185, 0.03150079]) >>> f.pdf(x, 2*a, 2*b, scale=(a/b)*2) array([0.00541179, 0.08331299, 0.14669185, 0.03150079])
Плотность вероятности выше определена в "стандартизированной" форме. Для сдвига и/или масштабирования распределения используйте
locиscaleпараметры. В частности,betaprime.pdf(x, a, b, loc, scale)тождественно эквивалентноbetaprime.pdf(y, a, b) / scaleсy = (x - loc) / scale. Обратите внимание, что сдвиг местоположения распределения не делает его "нецентральным" распределением; нецентральные обобщения некоторых распределений доступны в отдельных классах.Ссылки
[1]Бета-простое распределение, Википедия, https://en.wikipedia.org/wiki/Beta_prime_distribution
Примеры
>>> import numpy as np >>> from scipy.stats import betaprime >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Получить поддержку:
>>> a, b = 5, 6 >>> lb, ub = betaprime.support(a, b)
Вычислить первые четыре момента:
>>> mean, var, skew, kurt = betaprime.stats(a, b, moments='mvsk')
Отображение функции плотности вероятности (
pdf):>>> x = np.linspace(betaprime.ppf(0.01, a, b), ... betaprime.ppf(0.99, a, b), 100) >>> ax.plot(x, betaprime.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='betaprime pdf')
Альтернативно, объект распределения может быть вызван (как функция) для фиксации параметров формы, местоположения и масштаба. Это возвращает «замороженный» объект RV с заданными фиксированными параметрами.
Зафиксировать распределение и отобразить зафиксированное
pdf:>>> rv = betaprime(a, b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Проверить точность
cdfиppf:>>> vals = betaprime.ppf([0.001, 0.5, 0.999], a, b) >>> np.allclose([0.001, 0.5, 0.999], betaprime.cdf(vals, a, b)) True
Генерировать случайные числа:
>>> r = betaprime.rvs(a, b, size=1000)
И сравните гистограмму:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()