scipy.stats.betaprime#

scipy.stats.betaprime = object>[источник]#

Бета-прайм непрерывная случайная величина.

Как экземпляр rv_continuous класс, betaprime объект наследует от него коллекцию общих методов (см. ниже полный список), и дополняет их деталями, специфичными для этого конкретного распределения.

Методы

rvs(a, b, loc=0, scale=1, size=1, random_state=None)

Случайные величины.

pdf(x, a, b, loc=0, scale=1)

Функция плотности вероятности.

logpdf(x, a, b, loc=0, scale=1)

Логарифм функции плотности вероятности.

cdf(x, a, b, loc=0, scale=1)

Интегральная функция распределения.

logcdf(x, a, b, loc=0, scale=1)

Логарифм функции кумулятивного распределения.

sf(x, a, b, loc=0, scale=1)

Функция выживания (также определяется как 1 - cdf, но sf иногда более точный).

logsf(x, a, b, loc=0, scale=1)

Логарифм функции выживания.

ppf(q, a, b, loc=0, scale=1)

Процентная точка функции (обратная cdf — процентили).

isf(q, a, b, loc=0, scale=1)

Обратная функция выживания (обратная к sf).

moment(order, a, b, loc=0, scale=1)

Нецентральный момент указанного порядка.

stats(a, b, loc=0, scale=1, moments='mv')

Среднее ('m'), дисперсия ('v'), асимметрия ('s') и/или эксцесс ('k').

entropy(a, b, loc=0, scale=1)

(Дифференциальная) энтропия случайной величины.

fit(data)

Оценки параметров для общих данных. См. scipy.stats.rv_continuous.fit для подробной документации по ключевым аргументам.

expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Ожидаемое значение функции (одного аргумента) относительно распределения.

median(a, b, loc=0, scale=1)

Медиана распределения.

mean(a, b, loc=0, scale=1)

Среднее распределения.

var(a, b, loc=0, scale=1)

Дисперсия распределения.

std(a, b, loc=0, scale=1)

Стандартное отклонение распределения.

interval(confidence, a, b, loc=0, scale=1)

Доверительный интервал с равными площадями вокруг медианы.

Примечания

Функция плотности вероятности для betaprime равен:

\[f(x, a, b) = \frac{x^{a-1} (1+x)^{-a-b}}{\beta(a, b)}\]

для \(x >= 0\), \(a > 0\), \(b > 0\), где \(\beta(a, b)\) является бета-функцией (см. scipy.special.beta).

betaprime принимает a и b в качестве параметров формы.

Распределение связано с beta распределение следующим образом: Если \(X\) следует бета-распределению с параметрами \(a, b\), затем \(Y = X/(1-X)\) имеет бета-простое распределение с параметрами \(a, b\) ([1]).

Бета-прайм распределение — это перепараметризованная версия F-распределения. Бета-прайм распределение с параметрами формы a и b и scale = s эквивалентно F-распределению с параметрами d1 = 2*a, d2 = 2*b и scale = (a/b)*s. Например,

>>> from scipy.stats import betaprime, f
>>> x = [1, 2, 5, 10]
>>> a = 12
>>> b = 5
>>> betaprime.pdf(x, a, b, scale=2)
array([0.00541179, 0.08331299, 0.14669185, 0.03150079])
>>> f.pdf(x, 2*a, 2*b, scale=(a/b)*2)
array([0.00541179, 0.08331299, 0.14669185, 0.03150079])

Плотность вероятности выше определена в "стандартизированной" форме. Для сдвига и/или масштабирования распределения используйте loc и scale параметры. В частности, betaprime.pdf(x, a, b, loc, scale) тождественно эквивалентно betaprime.pdf(y, a, b) / scale с y = (x - loc) / scale. Обратите внимание, что сдвиг местоположения распределения не делает его "нецентральным" распределением; нецентральные обобщения некоторых распределений доступны в отдельных классах.

Ссылки

[1]

Бета-простое распределение, Википедия, https://en.wikipedia.org/wiki/Beta_prime_distribution

Примеры

>>> import numpy as np
>>> from scipy.stats import betaprime
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Получить поддержку:

>>> a, b = 5, 6
>>> lb, ub = betaprime.support(a, b)

Вычислить первые четыре момента:

>>> mean, var, skew, kurt = betaprime.stats(a, b, moments='mvsk')

Отображение функции плотности вероятности (pdf):

>>> x = np.linspace(betaprime.ppf(0.01, a, b),
...                 betaprime.ppf(0.99, a, b), 100)
>>> ax.plot(x, betaprime.pdf(x, a, b),
...        'r-', lw=5, alpha=0.6, label='betaprime pdf')

Альтернативно, объект распределения может быть вызван (как функция) для фиксации параметров формы, местоположения и масштаба. Это возвращает «замороженный» объект RV с заданными фиксированными параметрами.

Зафиксировать распределение и отобразить зафиксированное pdf:

>>> rv = betaprime(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Проверить точность cdf и ppf:

>>> vals = betaprime.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], betaprime.cdf(vals, a, b))
True

Генерировать случайные числа:

>>> r = betaprime.rvs(a, b, size=1000)

И сравните гистограмму:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-betaprime-1.png