scipy.stats.loglaplace#

scipy.stats.loglaplace = object>[источник]#

Лог-лапласовская непрерывная случайная величина.

Как экземпляр rv_continuous класс, loglaplace объект наследует от него коллекцию общих методов (см. ниже полный список), и дополняет их деталями, специфичными для этого конкретного распределения.

Методы

rvs(c, loc=0, scale=1, size=1, random_state=None)

Случайные величины.

pdf(x, c, loc=0, scale=1)

Функция плотности вероятности.

logpdf(x, c, loc=0, scale=1)

Логарифм функции плотности вероятности.

cdf(x, c, loc=0, scale=1)

Интегральная функция распределения.

logcdf(x, c, loc=0, scale=1)

Логарифм функции кумулятивного распределения.

sf(x, c, loc=0, scale=1)

Функция выживания (также определяется как 1 - cdf, но sf иногда более точный).

logsf(x, c, loc=0, scale=1)

Логарифм функции выживания.

ppf(q, c, loc=0, scale=1)

Процентная точка функции (обратная cdf — процентили).

isf(q, c, loc=0, scale=1)

Обратная функция выживания (обратная к sf).

moment(order, c, loc=0, scale=1)

Нецентральный момент указанного порядка.

stats(c, loc=0, scale=1, moments='mv')

Среднее ('m'), дисперсия ('v'), асимметрия ('s') и/или эксцесс ('k').

entropy(c, loc=0, scale=1)

(Дифференциальная) энтропия случайной величины.

fit(data)

Оценки параметров для общих данных. См. scipy.stats.rv_continuous.fit для подробной документации по ключевым аргументам.

expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Ожидаемое значение функции (одного аргумента) относительно распределения.

median(c, loc=0, scale=1)

Медиана распределения.

mean(c, loc=0, scale=1)

Среднее распределения.

var(c, loc=0, scale=1)

Дисперсия распределения.

std(c, loc=0, scale=1)

Стандартное отклонение распределения.

interval(confidence, c, loc=0, scale=1)

Доверительный интервал с равными площадями вокруг медианы.

Примечания

Функция плотности вероятности для loglaplace равен:

\[\begin{split}f(x, c) = \begin{cases}\frac{c}{2} x^{ c-1} &\text{for } 0 < x < 1\\ \frac{c}{2} x^{-c-1} &\text{for } x \ge 1 \end{cases}\end{split}\]

для \(c > 0\).

loglaplace принимает c в качестве параметра формы для \(c\).

Плотность вероятности выше определена в "стандартизированной" форме. Для сдвига и/или масштабирования распределения используйте loc и scale параметры. В частности, loglaplace.pdf(x, c, loc, scale) тождественно эквивалентно loglaplace.pdf(y, c) / scale с y = (x - loc) / scale. Обратите внимание, что сдвиг местоположения распределения не делает его "нецентральным" распределением; нецентральные обобщения некоторых распределений доступны в отдельных классах.

Предположим, случайная величина X следует распределению Лапласа с местоположением a и масштаб b. Затем Y = exp(X) следует лог-лапласовскому распределению с c = 1 / b и scale = exp(a).

Ссылки

Т.Дж. Козубовски и К. Подгорски, "Модель скорости роста с лог-лапласовским распределением", The Mathematical Scientist, том 28, стр. 49-60, 2003.

Примеры

>>> import numpy as np
>>> from scipy.stats import loglaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Получить поддержку:

>>> c = 3.25
>>> lb, ub = loglaplace.support(c)

Вычислить первые четыре момента:

>>> mean, var, skew, kurt = loglaplace.stats(c, moments='mvsk')

Отображение функции плотности вероятности (pdf):

>>> x = np.linspace(loglaplace.ppf(0.01, c),
...                 loglaplace.ppf(0.99, c), 100)
>>> ax.plot(x, loglaplace.pdf(x, c),
...        'r-', lw=5, alpha=0.6, label='loglaplace pdf')

Альтернативно, объект распределения может быть вызван (как функция) для фиксации параметров формы, местоположения и масштаба. Это возвращает «замороженный» объект RV с заданными фиксированными параметрами.

Зафиксировать распределение и отобразить зафиксированное pdf:

>>> rv = loglaplace(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Проверить точность cdf и ppf:

>>> vals = loglaplace.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loglaplace.cdf(vals, c))
True

Генерировать случайные числа:

>>> r = loglaplace.rvs(c, size=1000)

И сравните гистограмму:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-loglaplace-1.png