scipy.stats.loguniform#
-
scipy.stats.loguniform =
object> [источник]# Логравномерная или обратная непрерывная случайная величина.
Как экземпляр
rv_continuousкласс,loguniformобъект наследует от него коллекцию общих методов (см. ниже полный список), и дополняет их деталями, специфичными для этого конкретного распределения.Методы
rvs(a, b, loc=0, scale=1, size=1, random_state=None)
Случайные величины.
pdf(x, a, b, loc=0, scale=1)
Функция плотности вероятности.
logpdf(x, a, b, loc=0, scale=1)
Логарифм функции плотности вероятности.
cdf(x, a, b, loc=0, scale=1)
Интегральная функция распределения.
logcdf(x, a, b, loc=0, scale=1)
Логарифм функции кумулятивного распределения.
sf(x, a, b, loc=0, scale=1)
Функция выживания (также определяется как
1 - cdf, но sf иногда более точный).logsf(x, a, b, loc=0, scale=1)
Логарифм функции выживания.
ppf(q, a, b, loc=0, scale=1)
Процентная точка функции (обратная
cdf— процентили).isf(q, a, b, loc=0, scale=1)
Обратная функция выживания (обратная к
sf).moment(order, a, b, loc=0, scale=1)
Нецентральный момент указанного порядка.
stats(a, b, loc=0, scale=1, moments='mv')
Среднее ('m'), дисперсия ('v'), асимметрия ('s') и/или эксцесс ('k').
entropy(a, b, loc=0, scale=1)
(Дифференциальная) энтропия случайной величины.
fit(data)
Оценки параметров для общих данных. См. scipy.stats.rv_continuous.fit для подробной документации по ключевым аргументам.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Ожидаемое значение функции (одного аргумента) относительно распределения.
median(a, b, loc=0, scale=1)
Медиана распределения.
mean(a, b, loc=0, scale=1)
Среднее распределения.
var(a, b, loc=0, scale=1)
Дисперсия распределения.
std(a, b, loc=0, scale=1)
Стандартное отклонение распределения.
interval(confidence, a, b, loc=0, scale=1)
Доверительный интервал с равными площадями вокруг медианы.
Примечания
Функция плотности вероятности для этого класса:
\[f(x, a, b) = \frac{1}{x \log(b/a)}\]для \(a \le x \le b\), \(b > a > 0\). Этот класс принимает \(a\) и \(b\) в качестве параметров формы.
Плотность вероятности выше определена в "стандартизированной" форме. Для сдвига и/или масштабирования распределения используйте
locиscaleпараметры. В частности,loguniform.pdf(x, a, b, loc, scale)тождественно эквивалентноloguniform.pdf(y, a, b) / scaleсy = (x - loc) / scale. Обратите внимание, что сдвиг местоположения распределения не делает его "нецентральным" распределением; нецентральные обобщения некоторых распределений доступны в отдельных классах.Примеры
>>> import numpy as np >>> from scipy.stats import loguniform >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Получить поддержку:
>>> a, b = 0.01, 1.25 >>> lb, ub = loguniform.support(a, b)
Вычислить первые четыре момента:
>>> mean, var, skew, kurt = loguniform.stats(a, b, moments='mvsk')
Отображение функции плотности вероятности (
pdf):>>> x = np.linspace(loguniform.ppf(0.01, a, b), ... loguniform.ppf(0.99, a, b), 100) >>> ax.plot(x, loguniform.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='loguniform pdf')
Альтернативно, объект распределения может быть вызван (как функция) для фиксации параметров формы, местоположения и масштаба. Это возвращает «замороженный» объект RV с заданными фиксированными параметрами.
Зафиксировать распределение и отобразить зафиксированное
pdf:>>> rv = loguniform(a, b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Проверить точность
cdfиppf:>>> vals = loguniform.ppf([0.001, 0.5, 0.999], a, b) >>> np.allclose([0.001, 0.5, 0.999], loguniform.cdf(vals, a, b)) True
Генерировать случайные числа:
>>> r = loguniform.rvs(a, b, size=1000)
И сравните гистограмму:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Это не показывает равную вероятность
0.01,0.1и1. Это лучше всего, когда ось x имеет логарифмическую шкалу:>>> import numpy as np >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) >>> ax.hist(np.log10(r)) >>> ax.set_ylabel("Frequency") >>> ax.set_xlabel("Value of random variable") >>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0])) >>> ticks = ["$10^{{ {} }}$".format(i) for i in [-2, -1, 0]] >>> ax.set_xticklabels(ticks) >>> plt.show()
Эта случайная величина будет лог-равномерной независимо от выбранного основания для
aиb. Давайте укажем с основанием2вместо:>>> rvs = loguniform(2**-2, 2**0).rvs(size=1000)
Значения
1/4,1/2и1равновероятны для этой случайной величины. Вот гистограмма:>>> fig, ax = plt.subplots(1, 1) >>> ax.hist(np.log2(rvs)) >>> ax.set_ylabel("Frequency") >>> ax.set_xlabel("Value of random variable") >>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0])) >>> ticks = ["$2^{{ {} }}$".format(i) for i in [-2, -1, 0]] >>> ax.set_xticklabels(ticks) >>> plt.show()