scipy.stats.norminvgauss#
-
scipy.stats.norminvgauss =
object> [источник]# Непрерывная случайная величина с нормальным обратным гауссовским распределением.
Как экземпляр
rv_continuousкласс,norminvgaussобъект наследует от него коллекцию общих методов (см. ниже полный список), и дополняет их деталями, специфичными для этого конкретного распределения.Методы
rvs(a, b, loc=0, scale=1, size=1, random_state=None)
Случайные величины.
pdf(x, a, b, loc=0, scale=1)
Функция плотности вероятности.
logpdf(x, a, b, loc=0, scale=1)
Логарифм функции плотности вероятности.
cdf(x, a, b, loc=0, scale=1)
Интегральная функция распределения.
logcdf(x, a, b, loc=0, scale=1)
Логарифм функции кумулятивного распределения.
sf(x, a, b, loc=0, scale=1)
Функция выживания (также определяется как
1 - cdf, но sf иногда более точный).logsf(x, a, b, loc=0, scale=1)
Логарифм функции выживания.
ppf(q, a, b, loc=0, scale=1)
Процентная точка функции (обратная
cdf— процентили).isf(q, a, b, loc=0, scale=1)
Обратная функция выживания (обратная к
sf).moment(order, a, b, loc=0, scale=1)
Нецентральный момент указанного порядка.
stats(a, b, loc=0, scale=1, moments='mv')
Среднее ('m'), дисперсия ('v'), асимметрия ('s') и/или эксцесс ('k').
entropy(a, b, loc=0, scale=1)
(Дифференциальная) энтропия случайной величины.
fit(data)
Оценки параметров для общих данных. См. scipy.stats.rv_continuous.fit для подробной документации по ключевым аргументам.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Ожидаемое значение функции (одного аргумента) относительно распределения.
median(a, b, loc=0, scale=1)
Медиана распределения.
mean(a, b, loc=0, scale=1)
Среднее распределения.
var(a, b, loc=0, scale=1)
Дисперсия распределения.
std(a, b, loc=0, scale=1)
Стандартное отклонение распределения.
interval(confidence, a, b, loc=0, scale=1)
Доверительный интервал с равными площадями вокруг медианы.
Примечания
Функция плотности вероятности для
norminvgaussравен:\[f(x, a, b) = \frac{a \, K_1(a \sqrt{1 + x^2})}{\pi \sqrt{1 + x^2}} \, \exp(\sqrt{a^2 - b^2} + b x)\]где \(x\) является вещественным числом, параметр \(a\) является тяжестью хвоста и \(b\) является параметром асимметрии, удовлетворяющим \(a > 0\) и \(|b| <= a\). \(K_1\) является модифицированной функцией Бесселя второго рода (
scipy.special.k1).Плотность вероятности выше определена в "стандартизированной" форме. Для сдвига и/или масштабирования распределения используйте
locиscaleпараметры. В частности,norminvgauss.pdf(x, a, b, loc, scale)тождественно эквивалентноnorminvgauss.pdf(y, a, b) / scaleсy = (x - loc) / scale. Обратите внимание, что сдвиг местоположения распределения не делает его "нецентральным" распределением; нецентральные обобщения некоторых распределений доступны в отдельных классах.Нормальная обратная гауссова случайная величина Y с параметрами a и b может быть выражена как нормальная смесь среднего и дисперсии:
Y = b * V + sqrt(V) * Xгде X являетсяnorm(0,1)и V являетсяinvgauss(mu=1/sqrt(a**2 - b**2)). Это представление используется для генерации случайных величин.Другая распространённая параметризация распределения (см. Уравнение 2.1 в [2]) задаётся следующим выражением для плотности вероятности:
\[g(x, \alpha, \beta, \delta, \mu) = \frac{\alpha\delta K_1\left(\alpha\sqrt{\delta^2 + (x - \mu)^2}\right)} {\pi \sqrt{\delta^2 + (x - \mu)^2}} \, e^{\delta \sqrt{\alpha^2 - \beta^2} + \beta (x - \mu)}\]В SciPy это соответствует a = alpha * delta, b = beta * delta, loc = mu, scale=delta.
Ссылки
[1]O. Barndorff-Nielsen, "Hyperbolic Distributions and Distributions on Hyperbolae", Scandinavian Journal of Statistics, Vol. 5(3), pp. 151-157, 1978.
[2]O. Barndorff-Nielsen, «Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling», Scandinavian Journal of Statistics, Vol. 24, pp. 1-13, 1997.
Примеры
>>> import numpy as np >>> from scipy.stats import norminvgauss >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Получить поддержку:
>>> a, b = 1.25, 0.5 >>> lb, ub = norminvgauss.support(a, b)
Вычислить первые четыре момента:
>>> mean, var, skew, kurt = norminvgauss.stats(a, b, moments='mvsk')
Отображение функции плотности вероятности (
pdf):>>> x = np.linspace(norminvgauss.ppf(0.01, a, b), ... norminvgauss.ppf(0.99, a, b), 100) >>> ax.plot(x, norminvgauss.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='norminvgauss pdf')
Альтернативно, объект распределения может быть вызван (как функция) для фиксации параметров формы, местоположения и масштаба. Это возвращает «замороженный» объект RV с заданными фиксированными параметрами.
Зафиксировать распределение и отобразить зафиксированное
pdf:>>> rv = norminvgauss(a, b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Проверить точность
cdfиppf:>>> vals = norminvgauss.ppf([0.001, 0.5, 0.999], a, b) >>> np.allclose([0.001, 0.5, 0.999], norminvgauss.cdf(vals, a, b)) True
Генерировать случайные числа:
>>> r = norminvgauss.rvs(a, b, size=1000)
И сравните гистограмму:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()