scipy.stats.qmc.
update_discrepancy#
- scipy.stats.qmc.update_discrepancy(x_new, sample, initial_disc)[источник]#
Обновить центрированное расхождение с новым образцом.
- Параметры:
- x_newarray_like (1, d)
Новый образец для добавления в sample.
- samplearray_like (n, d)
Начальная выборка.
- initial_discfloat
Центрированное расхождение sample.
- Возвращает:
- несоответствиеfloat
Центрированное расхождение выборки, состоящей из x_new и sample.
Примеры
Мы также можем вычислить несоответствие итеративно, используя
iterative=True.>>> import numpy as np >>> from scipy.stats import qmc >>> space = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]]) >>> l_bounds = [0.5, 0.5] >>> u_bounds = [6.5, 6.5] >>> space = qmc.scale(space, l_bounds, u_bounds, reverse=True) >>> disc_init = qmc.discrepancy(space[:-1], iterative=True) >>> disc_init 0.04769081147119336 >>> qmc.update_discrepancy(space[-1], space[:-1], disc_init) 0.008142039609053513