scipy.special.

jn_zeros#

scipy.special.jn_zeros(n, nt)[источник]#

Вычислить нули целочисленных функций Бесселя Jn.

Вычислить nt нули функций Бесселя \(J_n(x)\) на интервале \((0, \infty)\). Нули возвращаются в возрастающем порядке. Обратите внимание, что этот интервал исключает ноль в \(x = 0\) который существует для \(n > 0\).

Параметры:
nint

Порядок функции Бесселя

ntint

Количество нулей для возврата

Возвращает:
ndarray

First nt нули функции Бесселя.

Смотрите также

jv

Функции Бесселя первого рода вещественного порядка

jnp_zeros

Нули \(Jn'\)

Ссылки

[1]

Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996, chapter 5. https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html

Примеры

Вычислите первые четыре положительных корня \(J_3\).

>>> from scipy.special import jn_zeros
>>> jn_zeros(3, 4)
array([ 6.3801619 ,  9.76102313, 13.01520072, 16.22346616])

Построить график \(J_3\) и его первые четыре положительных корня. Обратите внимание, что корень, расположенный в 0, не возвращается функцией jn_zeros.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.special import jn, jn_zeros
>>> j3_roots = jn_zeros(3, 4)
>>> xmax = 18
>>> xmin = -1
>>> x = np.linspace(xmin, xmax, 500)
>>> fig, ax = plt.subplots()
>>> ax.plot(x, jn(3, x), label=r'$J_3$')
>>> ax.scatter(j3_roots, np.zeros((4, )), s=30, c='r',
...            label=r"$J_3$_Zeros", zorder=5)
>>> ax.scatter(0, 0, s=30, c='k',
...            label=r"Root at 0", zorder=5)
>>> ax.hlines(0, 0, xmax, color='k')
>>> ax.set_xlim(xmin, xmax)
>>> plt.legend()
>>> plt.show()
../../_images/scipy-special-jn_zeros-1.png