scipy.stats.jf_skew_t#

scipy.stats.jf_skew_t = object>[источник]#

Распределение скошенного t Джонса и Фадди.

Как экземпляр rv_continuous класс, jf_skew_t объект наследует от него коллекцию общих методов (см. ниже полный список), и дополняет их деталями, специфичными для этого конкретного распределения.

Методы

rvs(a, b, loc=0, scale=1, size=1, random_state=None)

Случайные величины.

pdf(x, a, b, loc=0, scale=1)

Функция плотности вероятности.

logpdf(x, a, b, loc=0, scale=1)

Логарифм функции плотности вероятности.

cdf(x, a, b, loc=0, scale=1)

Интегральная функция распределения.

logcdf(x, a, b, loc=0, scale=1)

Логарифм функции кумулятивного распределения.

sf(x, a, b, loc=0, scale=1)

Функция выживания (также определяется как 1 - cdf, но sf иногда более точный).

logsf(x, a, b, loc=0, scale=1)

Логарифм функции выживания.

ppf(q, a, b, loc=0, scale=1)

Процентная точка функции (обратная cdf — процентили).

isf(q, a, b, loc=0, scale=1)

Обратная функция выживания (обратная к sf).

moment(order, a, b, loc=0, scale=1)

Нецентральный момент указанного порядка.

stats(a, b, loc=0, scale=1, moments='mv')

Среднее ('m'), дисперсия ('v'), асимметрия ('s') и/или эксцесс ('k').

entropy(a, b, loc=0, scale=1)

(Дифференциальная) энтропия случайной величины.

fit(data)

Оценки параметров для общих данных. См. scipy.stats.rv_continuous.fit для подробной документации по ключевым аргументам.

expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Ожидаемое значение функции (одного аргумента) относительно распределения.

median(a, b, loc=0, scale=1)

Медиана распределения.

mean(a, b, loc=0, scale=1)

Среднее распределения.

var(a, b, loc=0, scale=1)

Дисперсия распределения.

std(a, b, loc=0, scale=1)

Стандартное отклонение распределения.

interval(confidence, a, b, loc=0, scale=1)

Доверительный интервал с равными площадями вокруг медианы.

Примечания

Функция плотности вероятности для jf_skew_t равен:

\[f(x; a, b) = C_{a,b}^{-1} \left(1+\frac{x}{\left(a+b+x^2\right)^{1/2}}\right)^{a+1/2} \left(1-\frac{x}{\left(a+b+x^2\right)^{1/2}}\right)^{b+1/2}\]

для вещественных чисел \(a>0\) и \(b>0\), где \(C_{a,b} = 2^{a+b-1}B(a,b)(a+b)^{1/2}\), и \(B\) обозначает бета-функцию (scipy.special.beta).

Когда \(a, распределение отрицательно асимметрично, а когда \(a>b\), распределение положительно асимметрично. Если \(a=b\), тогда мы получаем t распределение с \(2a\) степени свободы.

jf_skew_t принимает \(a\) и \(b\) в качестве параметров формы.

Плотность вероятности выше определена в "стандартизированной" форме. Для сдвига и/или масштабирования распределения используйте loc и scale параметры. В частности, jf_skew_t.pdf(x, a, b, loc, scale) тождественно эквивалентно jf_skew_t.pdf(y, a, b) / scale с y = (x - loc) / scale. Обратите внимание, что сдвиг местоположения распределения не делает его "нецентральным" распределением; нецентральные обобщения некоторых распределений доступны в отдельных классах.

Ссылки

[1]

M.C. Jones и M.J. Faddy. “Асимметричное расширение t-распределения, с приложениями” Журнал Королевского статистического общества. Series B (Statistical Methodology) 65, no. 1 (2003): 159-174. DOI:10.1111/1467-9868.00378

Примеры

>>> import numpy as np
>>> from scipy.stats import jf_skew_t
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Получить поддержку:

>>> a, b = 8, 4
>>> lb, ub = jf_skew_t.support(a, b)

Вычислить первые четыре момента:

>>> mean, var, skew, kurt = jf_skew_t.stats(a, b, moments='mvsk')

Отображение функции плотности вероятности (pdf):

>>> x = np.linspace(jf_skew_t.ppf(0.01, a, b),
...                 jf_skew_t.ppf(0.99, a, b), 100)
>>> ax.plot(x, jf_skew_t.pdf(x, a, b),
...        'r-', lw=5, alpha=0.6, label='jf_skew_t pdf')

Альтернативно, объект распределения может быть вызван (как функция) для фиксации параметров формы, местоположения и масштаба. Это возвращает «замороженный» объект RV с заданными фиксированными параметрами.

Зафиксировать распределение и отобразить зафиксированное pdf:

>>> rv = jf_skew_t(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Проверить точность cdf и ppf:

>>> vals = jf_skew_t.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], jf_skew_t.cdf(vals, a, b))
True

Генерировать случайные числа:

>>> r = jf_skew_t.rvs(a, b, size=1000)

И сравните гистограмму:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-jf_skew_t-1.png