Кулинарная книга#

Это репозиторий для кратко и ясно примеры и ссылки на полезные рецепты pandas. Мы призываем пользователей дополнять эту документацию.

Добавление интересных ссылок и/или встроенных примеров в этот раздел — отличная идея Первый Pull Request.

Упрощенные, сжатые, удобные для новых пользователей встроенные примеры были добавлены, где возможно, чтобы дополнить ссылки на Stack-Overflow и GitHub. Многие ссылки содержат расширенную информацию, превышающую то, что предлагают встроенные примеры.

pandas (pd) и NumPy (np) — единственные два сокращённо импортируемых модуля. Остальные импортируются явно для новых пользователей.

Идиомы#

Это некоторые удобные pandas idioms

if-then/if-then-else на одном столбце и присвоение другому одному или нескольким столбцам:

In [1]: df = pd.DataFrame(
   ...:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ...: )
   ...: 

In [2]: df
Out[2]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

если-то…#

Условное выражение if-then на одном столбце

In [3]: df.loc[df.AAA >= 5, "BBB"] = -1

In [4]: df
Out[4]: 
   AAA  BBB  CCC
0    4   10  100
1    5   -1   50
2    6   -1  -30
3    7   -1  -50

Условное выражение с присваиванием 2 столбцам:

In [5]: df.loc[df.AAA >= 5, ["BBB", "CCC"]] = 555

In [6]: df
Out[6]: 
   AAA  BBB  CCC
0    4   10  100
1    5  555  555
2    6  555  555
3    7  555  555

Добавить другую строку с другой логикой, чтобы сделать -else

In [7]: df.loc[df.AAA < 5, ["BBB", "CCC"]] = 2000

In [8]: df
Out[8]: 
   AAA   BBB   CCC
0    4  2000  2000
1    5   555   555
2    6   555   555
3    7   555   555

Или используйте pandas where после настройки маски

In [9]: df_mask = pd.DataFrame(
   ...:     {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False] * 2}
   ...: )
   ...: 

In [10]: df.where(df_mask, -1000)
Out[10]: 
   AAA   BBB   CCC
0    4 -1000  2000
1    5 -1000 -1000
2    6 -1000   555
3    7 -1000 -1000

условный оператор if-then-else с использованием where() из NumPy

In [11]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [12]: df
Out[12]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [13]: df["logic"] = np.where(df["AAA"] > 5, "high", "low")

In [14]: df
Out[14]: 
   AAA  BBB  CCC logic
0    4   10  100   low
1    5   20   50   low
2    6   30  -30  high
3    7   40  -50  high

Разделение#

Разделение фрейма по булевому критерию

In [15]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [16]: df
Out[16]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [17]: df[df.AAA <= 5]
Out[17]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50

In [18]: df[df.AAA > 5]
Out[18]: 
   AAA  BBB  CCC
2    6   30  -30
3    7   40  -50

Построение критериев#

Выбор по многоколонным критериям

In [19]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [20]: df
Out[20]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

…и (без присваивания возвращает Series)

In [21]: df.loc[(df["BBB"] < 25) & (df["CCC"] >= -40), "AAA"]
Out[21]: 
0    4
1    5
Name: AAA, dtype: int64

…или (без присваивания возвращает Series)

In [22]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= -40), "AAA"]
Out[22]: 
0    4
1    5
2    6
3    7
Name: AAA, dtype: int64

…или (при присваивании изменяет DataFrame.)

In [23]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= 75), "AAA"] = 999

In [24]: df
Out[24]: 
   AAA  BBB  CCC
0  999   10  100
1    5   20   50
2  999   30  -30
3  999   40  -50

Выбор строк с данными, наиболее близкими к определенному значению, с использованием argsort

In [25]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [26]: df
Out[26]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [27]: aValue = 43.0

In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]: 
   AAA  BBB  CCC
1    5   20   50
0    4   10  100
2    6   30  -30
3    7   40  -50

Динамически сокращать список критериев с помощью бинарных операторов

In [29]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [30]: df
Out[30]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [31]: Crit1 = df.AAA <= 5.5

In [32]: Crit2 = df.BBB == 10.0

In [33]: Crit3 = df.CCC > -40.0

Можно жёстко задать:

In [34]: AllCrit = Crit1 & Crit2 & Crit3

…Или это можно сделать с помощью списка динамически создаваемых критериев

In [35]: import functools

In [36]: CritList = [Crit1, Crit2, Crit3]

In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)

In [38]: df[AllCrit]
Out[38]: 
   AAA  BBB  CCC
0    4   10  100

Выбор#

Dataframes#

The индексирование документация.

Использование как меток строк, так и условных значений

In [39]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [40]: df
Out[40]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]: 
   AAA  BBB  CCC
0    4   10  100
2    6   30  -30

Используйте loc для срезов по меткам и iloc для позиционных срезов GH 2904

In [42]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]},
   ....:     index=["foo", "bar", "boo", "kar"],
   ....: )
   ....: 

Существует 2 явных метода среза, с третьим общим случаем

  1. Позиционно-ориентированный (стиль срезов Python : исключая конец)

  2. Ориентированный на метки (не в стиле срезов Python: включительно с концом)

  3. Общий (любой стиль среза: зависит от того, содержит ли срез метки или позиции)

In [43]: df.loc["bar":"kar"]  # Label
Out[43]: 
     AAA  BBB  CCC
bar    5   20   50
boo    6   30  -30
kar    7   40  -50

# Generic
In [44]: df[0:3]
Out[44]: 
     AAA  BBB  CCC
foo    4   10  100
bar    5   20   50
boo    6   30  -30

In [45]: df["bar":"kar"]
Out[45]: 
     AAA  BBB  CCC
bar    5   20   50
boo    6   30  -30
kar    7   40  -50

Неоднозначность возникает, когда индекс состоит из целых чисел с ненулевым началом или шагом, отличным от единицы.

In [46]: data = {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}

In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4])  # Note index starts at 1.

In [48]: df2.iloc[1:3]  # Position-oriented
Out[48]: 
   AAA  BBB  CCC
2    5   20   50
3    6   30  -30

In [49]: df2.loc[1:3]  # Label-oriented
Out[49]: 
   AAA  BBB  CCC
1    4   10  100
2    5   20   50
3    6   30  -30

Использование обратного оператора (~) для взятия дополнения маски

In [50]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [51]: df
Out[51]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]: 
   AAA  BBB  CCC
1    5   20   50
3    7   40  -50

Новые столбцы#

Эффективное и динамическое создание новых столбцов с помощью DataFrame.map (ранее назывался applymap)

In [53]: df = pd.DataFrame({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]})

In [54]: df
Out[54]: 
   AAA  BBB  CCC
0    1    1    2
1    2    1    1
2    1    2    3
3    3    2    1

In [55]: source_cols = df.columns  # Or some subset would work too

In [56]: new_cols = [str(x) + "_cat" for x in source_cols]

In [57]: categories = {1: "Alpha", 2: "Beta", 3: "Charlie"}

In [58]: df[new_cols] = df[source_cols].map(categories.get)

In [59]: df
Out[59]: 
   AAA  BBB  CCC  AAA_cat BBB_cat  CCC_cat
0    1    1    2    Alpha   Alpha     Beta
1    2    1    1     Beta   Alpha    Alpha
2    1    2    3    Alpha    Beta  Charlie
3    3    2    1  Charlie    Beta    Alpha

Сохранять другие столбцы при использовании min() с groupby

In [60]: df = pd.DataFrame(
   ....:     {"AAA": [1, 1, 1, 2, 2, 2, 3, 3], "BBB": [2, 1, 3, 4, 5, 1, 2, 3]}
   ....: )
   ....: 

In [61]: df
Out[61]: 
   AAA  BBB
0    1    2
1    1    1
2    1    3
3    2    4
4    2    5
5    2    1
6    3    2
7    3    3

Метод 1: idxmin() для получения индекса минимальных значений

In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]: 
   AAA  BBB
1    1    1
5    2    1
6    3    2

Метод 2: сортировка, затем взятие первого из каждого

In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]: 
   AAA  BBB
0    1    1
1    2    1
2    3    2

Обратите внимание на те же результаты, за исключением индекса.

Мультииндексирование#

The многоуровневое индексирование документация.

Создание MultiIndex из помеченного фрейма

In [64]: df = pd.DataFrame(
   ....:     {
   ....:         "row": [0, 1, 2],
   ....:         "One_X": [1.1, 1.1, 1.1],
   ....:         "One_Y": [1.2, 1.2, 1.2],
   ....:         "Two_X": [1.11, 1.11, 1.11],
   ....:         "Two_Y": [1.22, 1.22, 1.22],
   ....:     }
   ....: )
   ....: 

In [65]: df
Out[65]: 
   row  One_X  One_Y  Two_X  Two_Y
0    0    1.1    1.2   1.11   1.22
1    1    1.1    1.2   1.11   1.22
2    2    1.1    1.2   1.11   1.22

# As Labelled Index
In [66]: df = df.set_index("row")

In [67]: df
Out[67]: 
     One_X  One_Y  Two_X  Two_Y
row                            
0      1.1    1.2   1.11   1.22
1      1.1    1.2   1.11   1.22
2      1.1    1.2   1.11   1.22

# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns])

In [69]: df
Out[69]: 
     One        Two      
       X    Y     X     Y
row                      
0    1.1  1.2  1.11  1.22
1    1.1  1.2  1.11  1.22
2    1.1  1.2  1.11  1.22

# Now stack & Reset
In [70]: df = df.stack(0, future_stack=True).reset_index(1)

In [71]: df
Out[71]: 
    level_1     X     Y
row                    
0       One  1.10  1.20
0       Two  1.11  1.22
1       One  1.10  1.20
1       Two  1.11  1.22
2       One  1.10  1.20
2       Two  1.11  1.22

# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ["Sample", "All_X", "All_Y"]

In [73]: df
Out[73]: 
    Sample  All_X  All_Y
row                     
0      One   1.10   1.20
0      Two   1.11   1.22
1      One   1.10   1.20
1      Two   1.11   1.22
2      One   1.10   1.20
2      Two   1.11   1.22

Арифметические#

Выполнение арифметических операций с MultiIndex, требующим трансляции

In [74]: cols = pd.MultiIndex.from_tuples(
   ....:     [(x, y) for x in ["A", "B", "C"] for y in ["O", "I"]]
   ....: )
   ....: 

In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=["n", "m"], columns=cols)

In [76]: df
Out[76]: 
          A                   B                   C          
          O         I         O         I         O         I
n  0.469112 -0.282863 -1.509059 -1.135632  1.212112 -0.173215
m  0.119209 -1.044236 -0.861849 -2.104569 -0.494929  1.071804

In [77]: df = df.div(df["C"], level=1)

In [78]: df
Out[78]: 
          A                   B              C     
          O         I         O         I    O    I
n  0.387021  1.633022 -1.244983  6.556214  1.0  1.0
m -0.240860 -0.974279  1.741358 -1.963577  1.0  1.0

Срезы#

Нарезка MultiIndex с помощью xs

In [79]: coords = [("AA", "one"), ("AA", "six"), ("BB", "one"), ("BB", "two"), ("BB", "six")]

In [80]: index = pd.MultiIndex.from_tuples(coords)

In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ["MyData"])

In [82]: df
Out[82]: 
        MyData
AA one      11
   six      22
BB one      33
   two      44
   six      55

Чтобы взять поперечное сечение 1-го уровня и 1-й оси индекса:

# Note : level and axis are optional, and default to zero
In [83]: df.xs("BB", level=0, axis=0)
Out[83]: 
     MyData
one      33
two      44
six      55

…и теперь второй уровень первой оси.

In [84]: df.xs("six", level=1, axis=0)
Out[84]: 
    MyData
AA      22
BB      55

Срез MultiIndex с помощью xs, метод #2

In [85]: import itertools

In [86]: index = list(itertools.product(["Ada", "Quinn", "Violet"], ["Comp", "Math", "Sci"]))

In [87]: headr = list(itertools.product(["Exams", "Labs"], ["I", "II"]))

In [88]: indx = pd.MultiIndex.from_tuples(index, names=["Student", "Course"])

In [89]: cols = pd.MultiIndex.from_tuples(headr)  # Notice these are un-named

In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]

In [91]: df = pd.DataFrame(data, indx, cols)

In [92]: df
Out[92]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Ada     Comp      70  71   72  73
        Math      71  73   75  74
        Sci       72  75   75  75
Quinn   Comp      73  74   75  76
        Math      74  76   78  77
        Sci       75  78   78  78
Violet  Comp      76  77   78  79
        Math      77  79   81  80
        Sci       78  81   81  81

In [93]: All = slice(None)

In [94]: df.loc["Violet"]
Out[94]: 
       Exams     Labs    
           I  II    I  II
Course                   
Comp      76  77   78  79
Math      77  79   81  80
Sci       78  81   81  81

In [95]: df.loc[(All, "Math"), All]
Out[95]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Ada     Math      71  73   75  74
Quinn   Math      74  76   78  77
Violet  Math      77  79   81  80

In [96]: df.loc[(slice("Ada", "Quinn"), "Math"), All]
Out[96]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Ada     Math      71  73   75  74
Quinn   Math      74  76   78  77

In [97]: df.loc[(All, "Math"), ("Exams")]
Out[97]: 
                 I  II
Student Course        
Ada     Math    71  73
Quinn   Math    74  76
Violet  Math    77  79

In [98]: df.loc[(All, "Math"), (All, "II")]
Out[98]: 
               Exams Labs
                  II   II
Student Course           
Ada     Math      73   74
Quinn   Math      76   77
Violet  Math      79   80

Установка частей MultiIndex с помощью xs

Сортировка#

Сортировка по определенному столбцу или упорядоченному списку столбцов, с MultiIndex

In [99]: df.sort_values(by=("Labs", "II"), ascending=False)
Out[99]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Violet  Sci       78  81   81  81
        Math      77  79   81  80
        Comp      76  77   78  79
Quinn   Sci       75  78   78  78
        Math      74  76   78  77
        Comp      73  74   75  76
Ada     Sci       72  75   75  75
        Math      71  73   75  74
        Comp      70  71   72  73

Частичный выбор, необходимость сортировки GH 2995

Уровни#

Добавление уровня к мультииндексу

Сглаживание иерархических столбцов

Отсутствующие данные#

The пропущенные данные документация.

Заполнение вперед обращённого временного ряда

In [100]: df = pd.DataFrame(
   .....:     np.random.randn(6, 1),
   .....:     index=pd.date_range("2013-08-01", periods=6, freq="B"),
   .....:     columns=list("A"),
   .....: )
   .....: 

In [101]: df.loc[df.index[3], "A"] = np.nan

In [102]: df
Out[102]: 
                   A
2013-08-01  0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06       NaN
2013-08-07 -0.424972
2013-08-08  0.567020

In [103]: df.bfill()
Out[103]: 
                   A
2013-08-01  0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 -0.424972
2013-08-07 -0.424972
2013-08-08  0.567020

cumsum сброс при значениях NaN

Заменить#

Использование replace с обратными ссылками

Группировка#

The группировка документация.

Базовая группировка с применением

В отличие от agg, вызываемому объекту apply передаётся под-DataFrame, что даёт доступ ко всем столбцам

In [104]: df = pd.DataFrame(
   .....:     {
   .....:         "animal": "cat dog cat fish dog cat cat".split(),
   .....:         "size": list("SSMMMLL"),
   .....:         "weight": [8, 10, 11, 1, 20, 12, 12],
   .....:         "adult": [False] * 5 + [True] * 2,
   .....:     }
   .....: )
   .....: 

In [105]: df
Out[105]: 
  animal size  weight  adult
0    cat    S       8  False
1    dog    S      10  False
2    cat    M      11  False
3   fish    M       1  False
4    dog    M      20  False
5    cat    L      12   True
6    cat    L      12   True

# List the size of the animals with the highest weight.
In [106]: df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()], include_groups=False)
Out[106]: 
animal
cat     L
dog     M
fish    M
dtype: object

Использование get_group

In [107]: gb = df.groupby("animal")

In [108]: gb.get_group("cat")
Out[108]: 
  animal size  weight  adult
0    cat    S       8  False
2    cat    M      11  False
5    cat    L      12   True
6    cat    L      12   True

Применить к разным элементам в группе

In [109]: def GrowUp(x):
   .....:     avg_weight = sum(x[x["size"] == "S"].weight * 1.5)
   .....:     avg_weight += sum(x[x["size"] == "M"].weight * 1.25)
   .....:     avg_weight += sum(x[x["size"] == "L"].weight)
   .....:     avg_weight /= len(x)
   .....:     return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"])
   .....: 

In [110]: expected_df = gb.apply(GrowUp, include_groups=False)

In [111]: expected_df
Out[111]: 
       size   weight  adult
animal                     
cat       L  12.4375   True
dog       L  20.0000   True
fish      L   1.2500   True

Expanding apply

In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])

In [113]: def cum_ret(x, y):
   .....:     return x * (1 + y)
   .....: 

In [114]: def red(x):
   .....:     return functools.reduce(cum_ret, x, 1.0)
   .....: 

In [115]: S.expanding().apply(red, raw=True)
Out[115]: 
0    1.010000
1    1.030200
2    1.061106
3    1.103550
4    1.158728
5    1.228251
6    1.314229
7    1.419367
8    1.547110
9    1.701821
dtype: float64

Замена некоторых значений средним значением остальных в группе

In [116]: df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, -1, 1, 2]})

In [117]: gb = df.groupby("A")

In [118]: def replace(g):
   .....:     mask = g < 0
   .....:     return g.where(~mask, g[~mask].mean())
   .....: 

In [119]: gb.transform(replace)
Out[119]: 
   B
0  1
1  1
2  1
3  2

Сортировка групп по агрегированным данным

In [120]: df = pd.DataFrame(
   .....:     {
   .....:         "code": ["foo", "bar", "baz"] * 2,
   .....:         "data": [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
   .....:         "flag": [False, True] * 3,
   .....:     }
   .....: )
   .....: 

In [121]: code_groups = df.groupby("code")

In [122]: agg_n_sort_order = code_groups[["data"]].transform("sum").sort_values(by="data")

In [123]: sorted_df = df.loc[agg_n_sort_order.index]

In [124]: sorted_df
Out[124]: 
  code  data   flag
1  bar -0.21   True
4  bar -0.59  False
0  foo  0.16  False
3  foo  0.45   True
2  baz  0.33  False
5  baz  0.62   True

Создание нескольких агрегированных столбцов

In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq="2min")

In [126]: ts = pd.Series(data=list(range(10)), index=rng)

In [127]: def MyCust(x):
   .....:     if len(x) > 2:
   .....:         return x.iloc[1] * 1.234
   .....:     return pd.NaT
   .....: 

In [128]: mhc = {"Mean": "mean", "Max": "max", "Custom": MyCust}

In [129]: ts.resample("5min").apply(mhc)
Out[129]: 
                     Mean  Max Custom
2014-10-07 00:00:00   1.0    2  1.234
2014-10-07 00:05:00   3.5    4    NaT
2014-10-07 00:10:00   6.0    7  7.404
2014-10-07 00:15:00   8.5    9    NaT

In [130]: ts
Out[130]: 
2014-10-07 00:00:00    0
2014-10-07 00:02:00    1
2014-10-07 00:04:00    2
2014-10-07 00:06:00    3
2014-10-07 00:08:00    4
2014-10-07 00:10:00    5
2014-10-07 00:12:00    6
2014-10-07 00:14:00    7
2014-10-07 00:16:00    8
2014-10-07 00:18:00    9
Freq: 2min, dtype: int64

Создать столбец с подсчётом значений и переназначить обратно в DataFrame

In [131]: df = pd.DataFrame(
   .....:     {"Color": "Red Red Red Blue".split(), "Value": [100, 150, 50, 50]}
   .....: )
   .....: 

In [132]: df
Out[132]: 
  Color  Value
0   Red    100
1   Red    150
2   Red     50
3  Blue     50

In [133]: df["Counts"] = df.groupby(["Color"]).transform(len)

In [134]: df
Out[134]: 
  Color  Value  Counts
0   Red    100       3
1   Red    150       3
2   Red     50       3
3  Blue     50       1

Сдвиг групп значений в столбце на основе индекса

In [135]: df = pd.DataFrame(
   .....:     {"line_race": [10, 10, 8, 10, 10, 8], "beyer": [99, 102, 103, 103, 88, 100]},
   .....:     index=[
   .....:         "Last Gunfighter",
   .....:         "Last Gunfighter",
   .....:         "Last Gunfighter",
   .....:         "Paynter",
   .....:         "Paynter",
   .....:         "Paynter",
   .....:     ],
   .....: )
   .....: 

In [136]: df
Out[136]: 
                 line_race  beyer
Last Gunfighter         10     99
Last Gunfighter         10    102
Last Gunfighter          8    103
Paynter                 10    103
Paynter                 10     88
Paynter                  8    100

In [137]: df["beyer_shifted"] = df.groupby(level=0)["beyer"].shift(1)

In [138]: df
Out[138]: 
                 line_race  beyer  beyer_shifted
Last Gunfighter         10     99            NaN
Last Gunfighter         10    102           99.0
Last Gunfighter          8    103          102.0
Paynter                 10    103            NaN
Paynter                 10     88          103.0
Paynter                  8    100           88.0

Выберите строку с максимальным значением из каждой группы

In [139]: df = pd.DataFrame(
   .....:     {
   .....:         "host": ["other", "other", "that", "this", "this"],
   .....:         "service": ["mail", "web", "mail", "mail", "web"],
   .....:         "no": [1, 2, 1, 2, 1],
   .....:     }
   .....: ).set_index(["host", "service"])
   .....: 

In [140]: mask = df.groupby(level=0).agg("idxmax")

In [141]: df_count = df.loc[mask["no"]].reset_index()

In [142]: df_count
Out[142]: 
    host service  no
0  other     web   2
1   that    mail   1
2   this    mail   2

Группировка, как в Python's itertools.groupby

In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=["A"])

In [144]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).groups
Out[144]: {1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]}

In [145]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).cumsum()
Out[145]: 
0    0
1    1
2    0
3    1
4    2
5    3
6    0
7    1
8    2
Name: A, dtype: int64

Расширение данных#

Выравнивание и до даты

Скользящее вычисление окна на основе значений вместо подсчетов

Скользящее среднее по временному интервалу

Разделение#

Разделение фрейма

Создать список DataFrame, разделенных с использованием логики, включенной в строки.

In [146]: df = pd.DataFrame(
   .....:     data={
   .....:         "Case": ["A", "A", "A", "B", "A", "A", "B", "A", "A"],
   .....:         "Data": np.random.randn(9),
   .....:     }
   .....: )
   .....: 

In [147]: dfs = list(
   .....:     zip(
   .....:         *df.groupby(
   .....:             (1 * (df["Case"] == "B"))
   .....:             .cumsum()
   .....:             .rolling(window=3, min_periods=1)
   .....:             .median()
   .....:         )
   .....:     )
   .....: )[-1]
   .....: 

In [148]: dfs[0]
Out[148]: 
  Case      Data
0    A  0.276232
1    A -1.087401
2    A -0.673690
3    B  0.113648

In [149]: dfs[1]
Out[149]: 
  Case      Data
4    A -1.478427
5    A  0.524988
6    B  0.404705

In [150]: dfs[2]
Out[150]: 
  Case      Data
7    A  0.577046
8    A -1.715002

Сводная таблица#

The Сводная таблица документация.

Частичные суммы и промежуточные итоги

In [151]: df = pd.DataFrame(
   .....:     data={
   .....:         "Province": ["ON", "QC", "BC", "AL", "AL", "MN", "ON"],
   .....:         "City": [
   .....:             "Toronto",
   .....:             "Montreal",
   .....:             "Vancouver",
   .....:             "Calgary",
   .....:             "Edmonton",
   .....:             "Winnipeg",
   .....:             "Windsor",
   .....:         ],
   .....:         "Sales": [13, 6, 16, 8, 4, 3, 1],
   .....:     }
   .....: )
   .....: 

In [152]: table = pd.pivot_table(
   .....:     df,
   .....:     values=["Sales"],
   .....:     index=["Province"],
   .....:     columns=["City"],
   .....:     aggfunc="sum",
   .....:     margins=True,
   .....: )
   .....: 

In [153]: table.stack("City", future_stack=True)
Out[153]: 
                    Sales
Province City            
AL       Calgary      8.0
         Edmonton     4.0
         Montreal     NaN
         Toronto      NaN
         Vancouver    NaN
...                   ...
All      Toronto     13.0
         Vancouver   16.0
         Windsor      1.0
         Winnipeg     3.0
         All         51.0

[48 rows x 1 columns]

Таблица частот, как plyr в R

In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]

In [155]: df = pd.DataFrame(
   .....:     {
   .....:         "ID": ["x%d" % r for r in range(10)],
   .....:         "Gender": ["F", "M", "F", "M", "F", "M", "F", "M", "M", "M"],
   .....:         "ExamYear": [
   .....:             "2007",
   .....:             "2007",
   .....:             "2007",
   .....:             "2008",
   .....:             "2008",
   .....:             "2008",
   .....:             "2008",
   .....:             "2009",
   .....:             "2009",
   .....:             "2009",
   .....:         ],
   .....:         "Class": [
   .....:             "algebra",
   .....:             "stats",
   .....:             "bio",
   .....:             "algebra",
   .....:             "algebra",
   .....:             "stats",
   .....:             "stats",
   .....:             "algebra",
   .....:             "bio",
   .....:             "bio",
   .....:         ],
   .....:         "Participated": [
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "no",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:         ],
   .....:         "Passed": ["yes" if x > 50 else "no" for x in grades],
   .....:         "Employed": [
   .....:             True,
   .....:             True,
   .....:             True,
   .....:             False,
   .....:             False,
   .....:             False,
   .....:             False,
   .....:             True,
   .....:             True,
   .....:             False,
   .....:         ],
   .....:         "Grade": grades,
   .....:     }
   .....: )
   .....: 

In [156]: df.groupby("ExamYear").agg(
   .....:     {
   .....:         "Participated": lambda x: x.value_counts()["yes"],
   .....:         "Passed": lambda x: sum(x == "yes"),
   .....:         "Employed": lambda x: sum(x),
   .....:         "Grade": lambda x: sum(x) / len(x),
   .....:     }
   .....: )
   .....: 
Out[156]: 
          Participated  Passed  Employed      Grade
ExamYear                                           
2007                 3       2         3  74.000000
2008                 3       3         0  68.500000
2009                 3       2         2  60.666667

Построение графика pandas DataFrame с данными год к году

Для создания перекрестной таблицы года и месяца:

In [157]: df = pd.DataFrame(
   .....:     {"value": np.random.randn(36)},
   .....:     index=pd.date_range("2011-01-01", freq="ME", periods=36),
   .....: )
   .....: 

In [158]: pd.pivot_table(
   .....:     df, index=df.index.month, columns=df.index.year, values="value", aggfunc="sum"
   .....: )
   .....: 
Out[158]: 
        2011      2012      2013
1  -1.039268 -0.968914  2.565646
2  -0.370647 -1.294524  1.431256
3  -1.157892  0.413738  1.340309
4  -1.344312  0.276662 -1.170299
5   0.844885 -0.472035 -0.226169
6   1.075770 -0.013960  0.410835
7  -0.109050 -0.362543  0.813850
8   1.643563 -0.006154  0.132003
9  -1.469388 -0.923061 -0.827317
10  0.357021  0.895717 -0.076467
11 -0.674600  0.805244 -1.187678
12 -1.776904 -1.206412  1.130127

Apply#

Применение скользящего окна для организации - Преобразование вложенных списков в фрейм с MultiIndex

In [159]: df = pd.DataFrame(
   .....:     data={
   .....:         "A": [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
   .....:         "B": [["a", "b", "c"], ["jj", "kk"], ["ccc"]],
   .....:     },
   .....:     index=["I", "II", "III"],
   .....: )
   .....: 

In [160]: def SeriesFromSubList(aList):
   .....:     return pd.Series(aList)
   .....: 

In [161]: df_orgz = pd.concat(
   .....:     {ind: row.apply(SeriesFromSubList) for ind, row in df.iterrows()}
   .....: )
   .....: 

In [162]: df_orgz
Out[162]: 
         0     1     2     3
I   A    2     4     8  16.0
    B    a     b     c   NaN
II  A  100   200   NaN   NaN
    B   jj    kk   NaN   NaN
III A   10  20.0  30.0   NaN
    B  ccc   NaN   NaN   NaN

Скользящее применение с DataFrame, возвращающее Series

Скользящее применение к нескольким столбцам, где функция вычисляет Series перед возвратом Scalar из Series

In [163]: df = pd.DataFrame(
   .....:     data=np.random.randn(2000, 2) / 10000,
   .....:     index=pd.date_range("2001-01-01", periods=2000),
   .....:     columns=["A", "B"],
   .....: )
   .....: 

In [164]: df
Out[164]: 
                   A         B
2001-01-01 -0.000144 -0.000141
2001-01-02  0.000161  0.000102
2001-01-03  0.000057  0.000088
2001-01-04 -0.000221  0.000097
2001-01-05 -0.000201 -0.000041
...              ...       ...
2006-06-19  0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113  0.000114
2006-06-22  0.000136  0.000109
2006-06-23  0.000027  0.000030

[2000 rows x 2 columns]

In [165]: def gm(df, const):
   .....:     v = ((((df["A"] + df["B"]) + 1).cumprod()) - 1) * const
   .....:     return v.iloc[-1]
   .....: 

In [166]: s = pd.Series(
   .....:     {
   .....:         df.index[i]: gm(df.iloc[i: min(i + 51, len(df) - 1)], 5)
   .....:         for i in range(len(df) - 50)
   .....:     }
   .....: )
   .....: 

In [167]: s
Out[167]: 
2001-01-01    0.000930
2001-01-02    0.002615
2001-01-03    0.001281
2001-01-04    0.001117
2001-01-05    0.002772
                ...   
2006-04-30    0.003296
2006-05-01    0.002629
2006-05-02    0.002081
2006-05-03    0.004247
2006-05-04    0.003928
Length: 1950, dtype: float64

Скользящее применение с DataFrame, возвращающее скаляр

вызов

In [168]: rng = pd.date_range(start="2014-01-01", periods=100)

In [169]: df = pd.DataFrame(
   .....:     {
   .....:         "Open": np.random.randn(len(rng)),
   .....:         "Close": np.random.randn(len(rng)),
   .....:         "Volume": np.random.randint(100, 2000, len(rng)),
   .....:     },
   .....:     index=rng,
   .....: )
   .....: 

In [170]: df
Out[170]: 
                Open     Close  Volume
2014-01-01 -1.611353 -0.492885    1219
2014-01-02 -3.000951  0.445794    1054
2014-01-03 -0.138359 -0.076081    1381
2014-01-04  0.301568  1.198259    1253
2014-01-05  0.276381 -0.669831    1728
...              ...       ...     ...
2014-04-06 -0.040338  0.937843    1188
2014-04-07  0.359661 -0.285908    1864
2014-04-08  0.060978  1.714814     941
2014-04-09  1.759055 -0.455942    1065
2014-04-10  0.138185 -1.147008    1453

[100 rows x 3 columns]

In [171]: def vwap(bars):
   .....:     return (bars.Close * bars.Volume).sum() / bars.Volume.sum()
   .....: 

In [172]: window = 5

In [173]: s = pd.concat(
   .....:     [
   .....:         (pd.Series(vwap(df.iloc[i: i + window]), index=[df.index[i + window]]))
   .....:         for i in range(len(df) - window)
   .....:     ]
   .....: )
   .....: 

In [174]: s.round(2)
Out[174]: 
2014-01-06    0.02
2014-01-07    0.11
2014-01-08    0.10
2014-01-09    0.07
2014-01-10   -0.29
              ... 
2014-04-06   -0.63
2014-04-07   -0.02
2014-04-08   -0.03
2014-04-09    0.34
2014-04-10    0.29
Length: 95, dtype: float64

Timeseries#

Между временами

Использование индексатора между временем

Создание диапазона дат, исключающего выходные и включающего только определённые времена

Векторизованный поиск

Агрегация и построение графиков временных рядов

Преобразовать матрицу с часами в столбцах и днями в строках в непрерывную последовательность строк в виде временного ряда. Как переупорядочить DataFrame в Python pandas?

Обработка дубликатов при переиндексации временного ряда к заданной частоте

Вычислить первый день месяца для каждой записи в DatetimeIndex

In [175]: dates = pd.date_range("2000-01-01", periods=5)

In [176]: dates.to_period(freq="M").to_timestamp()
Out[176]: 
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
               '2000-01-01'],
              dtype='datetime64[ns]', freq=None)

Ресемплинг#

The Resample документация.

Использование Grouper вместо TimeGrouper для временной группировки значений

Группировка по времени с некоторыми пропущенными значениями

Допустимые аргументы частоты для Grouper Timeseries

Группировка с использованием MultiIndex

Использование TimeGrouper и другой группировки для создания подгрупп, затем применение пользовательской функции GH 3791

Ресемплинг с пользовательскими периодами

Передискретизация внутридневного фрейма без добавления новых дней

Передискретизация минутных данных

Ресемплирование с groupby

Объединить#

The Объединить документация.

Объединить два DataFrame с перекрывающимися индексами (эмулировать R rbind)

In [177]: rng = pd.date_range("2000-01-01", periods=6)

In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=["A", "B", "C"])

In [179]: df2 = df1.copy()

В зависимости от построения df, ignore_index может потребоваться

In [180]: df = pd.concat([df1, df2], ignore_index=True)

In [181]: df
Out[181]: 
           A         B         C
0  -0.870117 -0.479265 -0.790855
1   0.144817  1.726395 -0.464535
2  -0.821906  1.597605  0.187307
3  -0.128342 -1.511638 -0.289858
4   0.399194 -1.430030 -0.639760
5   1.115116 -2.012600  1.810662
6  -0.870117 -0.479265 -0.790855
7   0.144817  1.726395 -0.464535
8  -0.821906  1.597605  0.187307
9  -0.128342 -1.511638 -0.289858
10  0.399194 -1.430030 -0.639760
11  1.115116 -2.012600  1.810662

Самообъединение DataFrame GH 2996

In [182]: df = pd.DataFrame(
   .....:     data={
   .....:         "Area": ["A"] * 5 + ["C"] * 2,
   .....:         "Bins": [110] * 2 + [160] * 3 + [40] * 2,
   .....:         "Test_0": [0, 1, 0, 1, 2, 0, 1],
   .....:         "Data": np.random.randn(7),
   .....:     }
   .....: )
   .....: 

In [183]: df
Out[183]: 
  Area  Bins  Test_0      Data
0    A   110       0 -0.433937
1    A   110       1 -0.160552
2    A   160       0  0.744434
3    A   160       1  1.754213
4    A   160       2  0.000850
5    C    40       0  0.342243
6    C    40       1  1.070599

In [184]: df["Test_1"] = df["Test_0"] - 1

In [185]: pd.merge(
   .....:     df,
   .....:     df,
   .....:     left_on=["Bins", "Area", "Test_0"],
   .....:     right_on=["Bins", "Area", "Test_1"],
   .....:     suffixes=("_L", "_R"),
   .....: )
   .....: 
Out[185]: 
  Area  Bins  Test_0_L    Data_L  Test_1_L  Test_0_R    Data_R  Test_1_R
0    A   110         0 -0.433937        -1         1 -0.160552         0
1    A   160         0  0.744434        -1         1  1.754213         0
2    A   160         1  1.754213         0         2  0.000850         1
3    C    40         0  0.342243        -1         1  1.070599         0

Как установить индекс и объединить

KDB-подобное соединение asof

Объединение с критерием на основе значений

Использование searchsorted для слияния на основе значений внутри диапазона

Построение графиков#

The Построение графиков документация.

Сделать Matplotlib похожим на R

Установка основных и второстепенных меток оси x

Построение нескольких графиков в IPython Jupyter notebook

Создание многострочного графика

Построение тепловой карты

Аннотировать график временного ряда

Аннотировать график временного ряда #2

Создание встроенных графиков в файлах Excel с использованием Pandas, Vincent и xlsxwriter

Боксплот для каждого квартиля стратифицирующей переменной

In [186]: df = pd.DataFrame(
   .....:     {
   .....:         "stratifying_var": np.random.uniform(0, 100, 20),
   .....:         "price": np.random.normal(100, 5, 20),
   .....:     }
   .....: )
   .....: 

In [187]: df["quartiles"] = pd.qcut(
   .....:     df["stratifying_var"], 4, labels=["0-25%", "25-50%", "50-75%", "75-100%"]
   .....: )
   .....: 

In [188]: df.boxplot(column="price", by="quartiles")
Out[188]: 
../_images/quartile_boxplot.png

Ввод/вывод данных#

Сравнение производительности SQL и HDF5

CSV#

The CSV документация

read_csv в действии

добавление в csv

Чтение csv по частям

Чтение только определенных строк CSV по частям

Чтение первых нескольких строк фрейма

Чтение файла, который сжат, но не с помощью gzip/bz2 (нативные форматы сжатия, которые read_csv понимает). Этот пример показывает WinZipped файл, но является общим применением открытия файла в контекстном менеджере и использования этого дескриптора для чтения. Смотрите здесь

Определение типов данных из файла

Обработка некорректных строк GH 2886

Запись CSV с многострочным индексом без дубликатов

Чтение нескольких файлов для создания одного DataFrame#

Лучший способ объединить несколько файлов в один DataFrame — прочитать отдельные фреймы один за другим, поместить все отдельные фреймы в список, а затем объединить фреймы в списке с помощью pd.concat():

In [189]: for i in range(3):
   .....:     data = pd.DataFrame(np.random.randn(10, 4))
   .....:     data.to_csv("file_{}.csv".format(i))
   .....: 

In [190]: files = ["file_0.csv", "file_1.csv", "file_2.csv"]

In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

Вы можете использовать тот же подход для чтения всех файлов, соответствующих шаблону. Вот пример с использованием glob:

In [192]: import glob

In [193]: import os

In [194]: files = glob.glob("file_*.csv")

In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

Наконец, эта стратегия будет работать с другими pd.read_*(...) функции, описанные в документация io.

Разбор компонентов даты в нескольких столбцах#

Разбор компонентов даты в нескольких столбцах выполняется быстрее с форматом

In [196]: i = pd.date_range("20000101", periods=10000)

In [197]: df = pd.DataFrame({"year": i.year, "month": i.month, "day": i.day})

In [198]: df.head()
Out[198]: 
   year  month  day
0  2000      1    1
1  2000      1    2
2  2000      1    3
3  2000      1    4
4  2000      1    5

In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
   .....: ds = df.apply(lambda x: "%04d%02d%02d" % (x["year"], x["month"], x["day"]), axis=1)
   .....: ds.head()
   .....: %timeit pd.to_datetime(ds)
   .....: 
2.94 ms +- 300 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
1.23 ms +- 4.74 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)

Пропустить строку между заголовком и данными#

In [200]: data = """;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....: ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....: ;;;;
   .....: date;Param1;Param2;Param4;Param5
   .....:     ;m²;°C;m²;m
   .....: ;;;;
   .....: 01.01.1990 00:00;1;1;2;3
   .....: 01.01.1990 01:00;5;3;4;5
   .....: 01.01.1990 02:00;9;5;6;7
   .....: 01.01.1990 03:00;13;7;8;9
   .....: 01.01.1990 04:00;17;9;10;11
   .....: 01.01.1990 05:00;21;11;12;13
   .....: """
   .....: 
Вариант 1: явно передать строки для пропуска#
In [201]: from io import StringIO

In [202]: pd.read_csv(
   .....:     StringIO(data),
   .....:     sep=";",
   .....:     skiprows=[11, 12],
   .....:     index_col=0,
   .....:     parse_dates=True,
   .....:     header=10,
   .....: )
   .....: 
Out[202]: 
                     Param1  Param2  Param4  Param5
date                                               
1990-01-01 00:00:00       1       1       2       3
1990-01-01 01:00:00       5       3       4       5
1990-01-01 02:00:00       9       5       6       7
1990-01-01 03:00:00      13       7       8       9
1990-01-01 04:00:00      17       9      10      11
1990-01-01 05:00:00      21      11      12      13
Вариант 2: чтение названий столбцов, а затем данных#
In [203]: pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')

In [204]: columns = pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns

In [205]: pd.read_csv(
   .....:     StringIO(data), sep=";", index_col=0, header=12, parse_dates=True, names=columns
   .....: )
   .....: 
Out[205]: 
                     Param1  Param2  Param4  Param5
date                                               
1990-01-01 00:00:00       1       1       2       3
1990-01-01 01:00:00       5       3       4       5
1990-01-01 02:00:00       9       5       6       7
1990-01-01 03:00:00      13       7       8       9
1990-01-01 04:00:00      17       9      10      11
1990-01-01 05:00:00      21      11      12      13

SQL#

The SQL документация

Чтение из баз данных с помощью SQL

Excel#

The Excel документация

Чтение из файлоподобного дескриптора

Изменение форматирования в выводе XlsxWriter

Загрузка только видимых листов GH 19842#issuecomment-892150745

HTML#

Чтение HTML-таблиц с сервера, который не может обработать заголовок запроса по умолчанию

HDFStore#

The HDFStores документация

Простые запросы с индексом Timestamp

Управление разнородными данными с использованием связанной иерархии нескольких таблиц GH 3032

Слияние таблиц на диске с миллионами строк

Избежание несоответствий при записи в хранилище из нескольких процессов/потоков

Дедупликация большого хранилища по частям, по сути рекурсивная операция редукции. Показывает функцию для приема данных из csv-файла и создания хранилища по частям, с парсингом дат. Смотрите здесь

Создание хранилища по частям из csv-файла

Добавление в хранилище при создании уникального индекса

Рабочие процессы с большими данными

Чтение последовательности файлов, затем предоставление глобального уникального индекса хранилищу при добавлении

Groupby на HDFStore с низкой плотностью групп

Groupby на HDFStore с высокой плотностью групп

Иерархические запросы к HDFStore

Подсчёт с использованием HDFStore

Устранение исключений HDFStore

Установка min_itemsize со строками

Использование ptrepack для создания полностью отсортированного индекса в хранилище

Сохранение атрибутов в групповой узел

In [206]: df = pd.DataFrame(np.random.randn(8, 3))

In [207]: store = pd.HDFStore("test.h5")

In [208]: store.put("df", df)

# you can store an arbitrary Python object via pickle
In [209]: store.get_storer("df").attrs.my_attribute = {"A": 10}

In [210]: store.get_storer("df").attrs.my_attribute
Out[210]: {'A': 10}

Вы можете создать или загрузить HDFStore в памяти, передав driver параметр для PyTables. Изменения записываются на диск только при закрытии HDFStore.

In [211]: store = pd.HDFStore("test.h5", "w", driver="H5FD_CORE")

In [212]: df = pd.DataFrame(np.random.randn(8, 3))

In [213]: store["test"] = df

# only after closing the store, data is written to disk:
In [214]: store.close()

Бинарные файлы#

pandas легко принимает массивы записей NumPy, если вам нужно прочитать двоичный файл, состоящий из массива структур C. Например, учитывая эту программу на C в файле с именем main.c скомпилированный с gcc main.c -std=gnu99 на 64-битной машине,

#include 
#include 

typedef struct _Data
{
    int32_t count;
    double avg;
    float scale;
} Data;

int main(int argc, const char *argv[])
{
    size_t n = 10;
    Data d[n];

    for (int i = 0; i < n; ++i)
    {
        d[i].count = i;
        d[i].avg = i + 1.0;
        d[i].scale = (float) i + 2.0f;
    }

    FILE *file = fopen("binary.dat", "wb");
    fwrite(&d, sizeof(Data), n, file);
    fclose(file);

    return 0;
}

следующий код Python прочитает бинарный файл 'binary.dat' в pandas DataFrame, где каждый элемент структуры соответствует столбцу во фрейме:

names = "count", "avg", "scale"

# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = "i4", "f8", "f4"
dt = np.dtype({"names": names, "offsets": offsets, "formats": formats}, align=True)
df = pd.DataFrame(np.fromfile("binary.dat", dt))

Примечание

Смещения элементов структуры могут различаться в зависимости от архитектуры машины, на которой был создан файл. Использование такого формата необработанного двоичного файла для общего хранения данных не рекомендуется, так как он не является кроссплатформенным. Мы рекомендуем использовать либо HDF5, либо parquet, оба из которых поддерживаются средствами ввода-вывода pandas.

Вычисления#

Численное интегрирование (на основе выборок) временного ряда

Корреляция#

Часто полезно получить нижнюю (или верхнюю) треугольную форму корреляционной матрицы, вычисленной из DataFrame.corr(). Это можно достичь, передав булеву маску в where следующим образом:

In [215]: df = pd.DataFrame(np.random.random(size=(100, 5)))

In [216]: corr_mat = df.corr()

In [217]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool_), k=-1)

In [218]: corr_mat.where(mask)
Out[218]: 
          0         1         2        3   4
0       NaN       NaN       NaN      NaN NaN
1 -0.079861       NaN       NaN      NaN NaN
2 -0.236573  0.183801       NaN      NaN NaN
3 -0.013795 -0.051975  0.037235      NaN NaN
4 -0.031974  0.118342 -0.073499 -0.02063 NaN

The method аргумент внутри DataFrame.corr может принимать вызываемый объект в дополнение к именованным типам корреляции. Здесь мы вычисляем корреляция расстояния матрица для DataFrame объект.

In [219]: def distcorr(x, y):
   .....:     n = len(x)
   .....:     a = np.zeros(shape=(n, n))
   .....:     b = np.zeros(shape=(n, n))
   .....:     for i in range(n):
   .....:         for j in range(i + 1, n):
   .....:             a[i, j] = abs(x[i] - x[j])
   .....:             b[i, j] = abs(y[i] - y[j])
   .....:     a += a.T
   .....:     b += b.T
   .....:     a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
   .....:     b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
   .....:     A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
   .....:     B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
   .....:     cov_ab = np.sqrt(np.nansum(A * B)) / n
   .....:     std_a = np.sqrt(np.sqrt(np.nansum(A ** 2)) / n)
   .....:     std_b = np.sqrt(np.sqrt(np.nansum(B ** 2)) / n)
   .....:     return cov_ab / std_a / std_b
   .....: 

In [220]: df = pd.DataFrame(np.random.normal(size=(100, 3)))

In [221]: df.corr(method=distcorr)
Out[221]: 
          0         1         2
0  1.000000  0.197613  0.216328
1  0.197613  1.000000  0.208749
2  0.216328  0.208749  1.000000

Timedeltas#

The Timedeltas документация.

Использование временных дельт

In [222]: import datetime

In [223]: s = pd.Series(pd.date_range("2012-1-1", periods=3, freq="D"))

In [224]: s - s.max()
Out[224]: 
0   -2 days
1   -1 days
2    0 days
dtype: timedelta64[ns]

In [225]: s.max() - s
Out[225]: 
0   2 days
1   1 days
2   0 days
dtype: timedelta64[ns]

In [226]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[226]: 
0   364 days 20:55:00
1   365 days 20:55:00
2   366 days 20:55:00
dtype: timedelta64[ns]

In [227]: s + datetime.timedelta(minutes=5)
Out[227]: 
0   2012-01-01 00:05:00
1   2012-01-02 00:05:00
2   2012-01-03 00:05:00
dtype: datetime64[ns]

In [228]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[228]: 
0   -365 days +03:05:00
1   -366 days +03:05:00
2   -367 days +03:05:00
dtype: timedelta64[ns]

In [229]: datetime.timedelta(minutes=5) + s
Out[229]: 
0   2012-01-01 00:05:00
1   2012-01-02 00:05:00
2   2012-01-03 00:05:00
dtype: datetime64[ns]

Сложение и вычитание дельт и дат

In [230]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [231]: df = pd.DataFrame({"A": s, "B": deltas})

In [232]: df
Out[232]: 
           A      B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [233]: df["New Dates"] = df["A"] + df["B"]

In [234]: df["Delta"] = df["A"] - df["New Dates"]

In [235]: df
Out[235]: 
           A      B  New Dates   Delta
0 2012-01-01 0 days 2012-01-01  0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [236]: df.dtypes
Out[236]: 
A             datetime64[ns]
B            timedelta64[ns]
New Dates     datetime64[ns]
Delta        timedelta64[ns]
dtype: object

Другой пример

Значения могут быть установлены в NaT с использованием np.nan, аналогично datetime

In [237]: y = s - s.shift()

In [238]: y
Out[238]: 
0      NaT
1   1 days
2   1 days
dtype: timedelta64[ns]

In [239]: y[1] = np.nan

In [240]: y
Out[240]: 
0      NaT
1      NaT
2   1 days
dtype: timedelta64[ns]

Создание примерных данных#

Чтобы создать dataframe из каждой комбинации некоторых заданных значений, как в R's expand.grid() функция, мы можем создать словарь, где ключи - это имена столбцов, а значения - списки значений данных:

In [241]: def expand_grid(data_dict):
   .....:     rows = itertools.product(*data_dict.values())
   .....:     return pd.DataFrame.from_records(rows, columns=data_dict.keys())
   .....: 

In [242]: df = expand_grid(
   .....:     {"height": [60, 70], "weight": [100, 140, 180], "sex": ["Male", "Female"]}
   .....: )
   .....: 

In [243]: df
Out[243]: 
    height  weight     sex
0       60     100    Male
1       60     100  Female
2       60     140    Male
3       60     140  Female
4       60     180    Male
5       60     180  Female
6       70     100    Male
7       70     100  Female
8       70     140    Male
9       70     140  Female
10      70     180    Male
11      70     180  Female

Постоянный ряд#

Чтобы оценить, имеет ли ряд постоянное значение, мы можем проверить, если series.nunique() <= 1. Однако более производительный подход, который не подсчитывает все уникальные значения сначала:

In [244]: v = s.to_numpy()

In [245]: is_constant = v.shape[0] == 0 or (s[0] == s).all()

Этот подход предполагает, что ряд не содержит пропущенных значений. Если нам нужно удалить значения NA, мы можем просто сначала удалить эти значения:

In [246]: v = s.dropna().to_numpy()

In [247]: is_constant = v.shape[0] == 0 or (s[0] == s).all()

Если пропущенные значения считаются отличными от любого другого значения, то можно использовать:

In [248]: v = s.to_numpy()

In [249]: is_constant = v.shape[0] == 0 or (s[0] == s).all() or not pd.notna(v).any()

(Обратите внимание, что этот пример не различает np.nan, pd.NA и None)