Кулинарная книга#
Это репозиторий для кратко и ясно примеры и ссылки на полезные рецепты pandas. Мы призываем пользователей дополнять эту документацию.
Добавление интересных ссылок и/или встроенных примеров в этот раздел — отличная идея Первый Pull Request.
Упрощенные, сжатые, удобные для новых пользователей встроенные примеры были добавлены, где возможно, чтобы дополнить ссылки на Stack-Overflow и GitHub. Многие ссылки содержат расширенную информацию, превышающую то, что предлагают встроенные примеры.
pandas (pd) и NumPy (np) — единственные два сокращённо импортируемых модуля. Остальные импортируются явно для новых пользователей.
Идиомы#
Это некоторые удобные pandas idioms
if-then/if-then-else на одном столбце и присвоение другому одному или нескольким столбцам:
In [1]: df = pd.DataFrame(
...: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
...: )
...:
In [2]: df
Out[2]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
если-то…#
Условное выражение if-then на одном столбце
In [3]: df.loc[df.AAA >= 5, "BBB"] = -1
In [4]: df
Out[4]:
AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50
Условное выражение с присваиванием 2 столбцам:
In [5]: df.loc[df.AAA >= 5, ["BBB", "CCC"]] = 555
In [6]: df
Out[6]:
AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555
Добавить другую строку с другой логикой, чтобы сделать -else
In [7]: df.loc[df.AAA < 5, ["BBB", "CCC"]] = 2000
In [8]: df
Out[8]:
AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555
Или используйте pandas where после настройки маски
In [9]: df_mask = pd.DataFrame(
...: {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False] * 2}
...: )
...:
In [10]: df.where(df_mask, -1000)
Out[10]:
AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000
условный оператор if-then-else с использованием where() из NumPy
In [11]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [12]: df
Out[12]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [13]: df["logic"] = np.where(df["AAA"] > 5, "high", "low")
In [14]: df
Out[14]:
AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high
Разделение#
Разделение фрейма по булевому критерию
In [15]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [16]: df
Out[16]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [17]: df[df.AAA <= 5]
Out[17]:
AAA BBB CCC
0 4 10 100
1 5 20 50
In [18]: df[df.AAA > 5]
Out[18]:
AAA BBB CCC
2 6 30 -30
3 7 40 -50
Построение критериев#
Выбор по многоколонным критериям
In [19]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [20]: df
Out[20]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
…и (без присваивания возвращает Series)
In [21]: df.loc[(df["BBB"] < 25) & (df["CCC"] >= -40), "AAA"]
Out[21]:
0 4
1 5
Name: AAA, dtype: int64
…или (без присваивания возвращает Series)
In [22]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= -40), "AAA"]
Out[22]:
0 4
1 5
2 6
3 7
Name: AAA, dtype: int64
…или (при присваивании изменяет DataFrame.)
In [23]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= 75), "AAA"] = 999
In [24]: df
Out[24]:
AAA BBB CCC
0 999 10 100
1 5 20 50
2 999 30 -30
3 999 40 -50
Выбор строк с данными, наиболее близкими к определенному значению, с использованием argsort
In [25]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [26]: df
Out[26]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [27]: aValue = 43.0
In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]:
AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50
Динамически сокращать список критериев с помощью бинарных операторов
In [29]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [30]: df
Out[30]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [31]: Crit1 = df.AAA <= 5.5
In [32]: Crit2 = df.BBB == 10.0
In [33]: Crit3 = df.CCC > -40.0
Можно жёстко задать:
In [34]: AllCrit = Crit1 & Crit2 & Crit3
…Или это можно сделать с помощью списка динамически создаваемых критериев
In [35]: import functools
In [36]: CritList = [Crit1, Crit2, Crit3]
In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)
In [38]: df[AllCrit]
Out[38]:
AAA BBB CCC
0 4 10 100
Выбор#
Dataframes#
The индексирование документация.
Использование как меток строк, так и условных значений
In [39]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [40]: df
Out[40]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]:
AAA BBB CCC
0 4 10 100
2 6 30 -30
Используйте loc для срезов по меткам и iloc для позиционных срезов GH 2904
In [42]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]},
....: index=["foo", "bar", "boo", "kar"],
....: )
....:
Существует 2 явных метода среза, с третьим общим случаем
Позиционно-ориентированный (стиль срезов Python : исключая конец)
Ориентированный на метки (не в стиле срезов Python: включительно с концом)
Общий (любой стиль среза: зависит от того, содержит ли срез метки или позиции)
In [43]: df.loc["bar":"kar"] # Label
Out[43]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
# Generic
In [44]: df[0:3]
Out[44]:
AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
In [45]: df["bar":"kar"]
Out[45]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
Неоднозначность возникает, когда индекс состоит из целых чисел с ненулевым началом или шагом, отличным от единицы.
In [46]: data = {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1.
In [48]: df2.iloc[1:3] # Position-oriented
Out[48]:
AAA BBB CCC
2 5 20 50
3 6 30 -30
In [49]: df2.loc[1:3] # Label-oriented
Out[49]:
AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30
Использование обратного оператора (~) для взятия дополнения маски
In [50]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [51]: df
Out[51]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]:
AAA BBB CCC
1 5 20 50
3 7 40 -50
Новые столбцы#
In [53]: df = pd.DataFrame({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]})
In [54]: df
Out[54]:
AAA BBB CCC
0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1
In [55]: source_cols = df.columns # Or some subset would work too
In [56]: new_cols = [str(x) + "_cat" for x in source_cols]
In [57]: categories = {1: "Alpha", 2: "Beta", 3: "Charlie"}
In [58]: df[new_cols] = df[source_cols].map(categories.get)
In [59]: df
Out[59]:
AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 Alpha Alpha Beta
1 2 1 1 Beta Alpha Alpha
2 1 2 3 Alpha Beta Charlie
3 3 2 1 Charlie Beta Alpha
Сохранять другие столбцы при использовании min() с groupby
In [60]: df = pd.DataFrame(
....: {"AAA": [1, 1, 1, 2, 2, 2, 3, 3], "BBB": [2, 1, 3, 4, 5, 1, 2, 3]}
....: )
....:
In [61]: df
Out[61]:
AAA BBB
0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3
Метод 1: idxmin() для получения индекса минимальных значений
In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]:
AAA BBB
1 1 1
5 2 1
6 3 2
Метод 2: сортировка, затем взятие первого из каждого
In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]:
AAA BBB
0 1 1
1 2 1
2 3 2
Обратите внимание на те же результаты, за исключением индекса.
Мультииндексирование#
The многоуровневое индексирование документация.
Создание MultiIndex из помеченного фрейма
In [64]: df = pd.DataFrame(
....: {
....: "row": [0, 1, 2],
....: "One_X": [1.1, 1.1, 1.1],
....: "One_Y": [1.2, 1.2, 1.2],
....: "Two_X": [1.11, 1.11, 1.11],
....: "Two_Y": [1.22, 1.22, 1.22],
....: }
....: )
....:
In [65]: df
Out[65]:
row One_X One_Y Two_X Two_Y
0 0 1.1 1.2 1.11 1.22
1 1 1.1 1.2 1.11 1.22
2 2 1.1 1.2 1.11 1.22
# As Labelled Index
In [66]: df = df.set_index("row")
In [67]: df
Out[67]:
One_X One_Y Two_X Two_Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns])
In [69]: df
Out[69]:
One Two
X Y X Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# Now stack & Reset
In [70]: df = df.stack(0, future_stack=True).reset_index(1)
In [71]: df
Out[71]:
level_1 X Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ["Sample", "All_X", "All_Y"]
In [73]: df
Out[73]:
Sample All_X All_Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
Арифметические#
Выполнение арифметических операций с MultiIndex, требующим трансляции
In [74]: cols = pd.MultiIndex.from_tuples(
....: [(x, y) for x in ["A", "B", "C"] for y in ["O", "I"]]
....: )
....:
In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=["n", "m"], columns=cols)
In [76]: df
Out[76]:
A B C
O I O I O I
n 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215
m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804
In [77]: df = df.div(df["C"], level=1)
In [78]: df
Out[78]:
A B C
O I O I O I
n 0.387021 1.633022 -1.244983 6.556214 1.0 1.0
m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0
Срезы#
Нарезка MultiIndex с помощью xs
In [79]: coords = [("AA", "one"), ("AA", "six"), ("BB", "one"), ("BB", "two"), ("BB", "six")]
In [80]: index = pd.MultiIndex.from_tuples(coords)
In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ["MyData"])
In [82]: df
Out[82]:
MyData
AA one 11
six 22
BB one 33
two 44
six 55
Чтобы взять поперечное сечение 1-го уровня и 1-й оси индекса:
# Note : level and axis are optional, and default to zero
In [83]: df.xs("BB", level=0, axis=0)
Out[83]:
MyData
one 33
two 44
six 55
…и теперь второй уровень первой оси.
In [84]: df.xs("six", level=1, axis=0)
Out[84]:
MyData
AA 22
BB 55
Срез MultiIndex с помощью xs, метод #2
In [85]: import itertools
In [86]: index = list(itertools.product(["Ada", "Quinn", "Violet"], ["Comp", "Math", "Sci"]))
In [87]: headr = list(itertools.product(["Exams", "Labs"], ["I", "II"]))
In [88]: indx = pd.MultiIndex.from_tuples(index, names=["Student", "Course"])
In [89]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named
In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]
In [91]: df = pd.DataFrame(data, indx, cols)
In [92]: df
Out[92]:
Exams Labs
I II I II
Student Course
Ada Comp 70 71 72 73
Math 71 73 75 74
Sci 72 75 75 75
Quinn Comp 73 74 75 76
Math 74 76 78 77
Sci 75 78 78 78
Violet Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [93]: All = slice(None)
In [94]: df.loc["Violet"]
Out[94]:
Exams Labs
I II I II
Course
Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [95]: df.loc[(All, "Math"), All]
Out[95]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
Violet Math 77 79 81 80
In [96]: df.loc[(slice("Ada", "Quinn"), "Math"), All]
Out[96]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
In [97]: df.loc[(All, "Math"), ("Exams")]
Out[97]:
I II
Student Course
Ada Math 71 73
Quinn Math 74 76
Violet Math 77 79
In [98]: df.loc[(All, "Math"), (All, "II")]
Out[98]:
Exams Labs
II II
Student Course
Ada Math 73 74
Quinn Math 76 77
Violet Math 79 80
Сортировка#
Сортировка по определенному столбцу или упорядоченному списку столбцов, с MultiIndex
In [99]: df.sort_values(by=("Labs", "II"), ascending=False)
Out[99]:
Exams Labs
I II I II
Student Course
Violet Sci 78 81 81 81
Math 77 79 81 80
Comp 76 77 78 79
Quinn Sci 75 78 78 78
Math 74 76 78 77
Comp 73 74 75 76
Ada Sci 72 75 75 75
Math 71 73 75 74
Comp 70 71 72 73
Частичный выбор, необходимость сортировки GH 2995
Уровни#
Отсутствующие данные#
The пропущенные данные документация.
Заполнение вперед обращённого временного ряда
In [100]: df = pd.DataFrame(
.....: np.random.randn(6, 1),
.....: index=pd.date_range("2013-08-01", periods=6, freq="B"),
.....: columns=list("A"),
.....: )
.....:
In [101]: df.loc[df.index[3], "A"] = np.nan
In [102]: df
Out[102]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 NaN
2013-08-07 -0.424972
2013-08-08 0.567020
In [103]: df.bfill()
Out[103]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 -0.424972
2013-08-07 -0.424972
2013-08-08 0.567020
cumsum сброс при значениях NaN
Заменить#
Группировка#
The группировка документация.
Базовая группировка с применением
В отличие от agg, вызываемому объекту apply передаётся под-DataFrame, что даёт доступ ко всем столбцам
In [104]: df = pd.DataFrame(
.....: {
.....: "animal": "cat dog cat fish dog cat cat".split(),
.....: "size": list("SSMMMLL"),
.....: "weight": [8, 10, 11, 1, 20, 12, 12],
.....: "adult": [False] * 5 + [True] * 2,
.....: }
.....: )
.....:
In [105]: df
Out[105]:
animal size weight adult
0 cat S 8 False
1 dog S 10 False
2 cat M 11 False
3 fish M 1 False
4 dog M 20 False
5 cat L 12 True
6 cat L 12 True
# List the size of the animals with the highest weight.
In [106]: df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()], include_groups=False)
Out[106]:
animal
cat L
dog M
fish M
dtype: object
In [107]: gb = df.groupby("animal")
In [108]: gb.get_group("cat")
Out[108]:
animal size weight adult
0 cat S 8 False
2 cat M 11 False
5 cat L 12 True
6 cat L 12 True
Применить к разным элементам в группе
In [109]: def GrowUp(x):
.....: avg_weight = sum(x[x["size"] == "S"].weight * 1.5)
.....: avg_weight += sum(x[x["size"] == "M"].weight * 1.25)
.....: avg_weight += sum(x[x["size"] == "L"].weight)
.....: avg_weight /= len(x)
.....: return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"])
.....:
In [110]: expected_df = gb.apply(GrowUp, include_groups=False)
In [111]: expected_df
Out[111]:
size weight adult
animal
cat L 12.4375 True
dog L 20.0000 True
fish L 1.2500 True
In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])
In [113]: def cum_ret(x, y):
.....: return x * (1 + y)
.....:
In [114]: def red(x):
.....: return functools.reduce(cum_ret, x, 1.0)
.....:
In [115]: S.expanding().apply(red, raw=True)
Out[115]:
0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64
Замена некоторых значений средним значением остальных в группе
In [116]: df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, -1, 1, 2]})
In [117]: gb = df.groupby("A")
In [118]: def replace(g):
.....: mask = g < 0
.....: return g.where(~mask, g[~mask].mean())
.....:
In [119]: gb.transform(replace)
Out[119]:
B
0 1
1 1
2 1
3 2
Сортировка групп по агрегированным данным
In [120]: df = pd.DataFrame(
.....: {
.....: "code": ["foo", "bar", "baz"] * 2,
.....: "data": [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
.....: "flag": [False, True] * 3,
.....: }
.....: )
.....:
In [121]: code_groups = df.groupby("code")
In [122]: agg_n_sort_order = code_groups[["data"]].transform("sum").sort_values(by="data")
In [123]: sorted_df = df.loc[agg_n_sort_order.index]
In [124]: sorted_df
Out[124]:
code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
2 baz 0.33 False
5 baz 0.62 True
Создание нескольких агрегированных столбцов
In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq="2min")
In [126]: ts = pd.Series(data=list(range(10)), index=rng)
In [127]: def MyCust(x):
.....: if len(x) > 2:
.....: return x.iloc[1] * 1.234
.....: return pd.NaT
.....:
In [128]: mhc = {"Mean": "mean", "Max": "max", "Custom": MyCust}
In [129]: ts.resample("5min").apply(mhc)
Out[129]:
Mean Max Custom
2014-10-07 00:00:00 1.0 2 1.234
2014-10-07 00:05:00 3.5 4 NaT
2014-10-07 00:10:00 6.0 7 7.404
2014-10-07 00:15:00 8.5 9 NaT
In [130]: ts
Out[130]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2min, dtype: int64
Создать столбец с подсчётом значений и переназначить обратно в DataFrame
In [131]: df = pd.DataFrame(
.....: {"Color": "Red Red Red Blue".split(), "Value": [100, 150, 50, 50]}
.....: )
.....:
In [132]: df
Out[132]:
Color Value
0 Red 100
1 Red 150
2 Red 50
3 Blue 50
In [133]: df["Counts"] = df.groupby(["Color"]).transform(len)
In [134]: df
Out[134]:
Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1
Сдвиг групп значений в столбце на основе индекса
In [135]: df = pd.DataFrame(
.....: {"line_race": [10, 10, 8, 10, 10, 8], "beyer": [99, 102, 103, 103, 88, 100]},
.....: index=[
.....: "Last Gunfighter",
.....: "Last Gunfighter",
.....: "Last Gunfighter",
.....: "Paynter",
.....: "Paynter",
.....: "Paynter",
.....: ],
.....: )
.....:
In [136]: df
Out[136]:
line_race beyer
Last Gunfighter 10 99
Last Gunfighter 10 102
Last Gunfighter 8 103
Paynter 10 103
Paynter 10 88
Paynter 8 100
In [137]: df["beyer_shifted"] = df.groupby(level=0)["beyer"].shift(1)
In [138]: df
Out[138]:
line_race beyer beyer_shifted
Last Gunfighter 10 99 NaN
Last Gunfighter 10 102 99.0
Last Gunfighter 8 103 102.0
Paynter 10 103 NaN
Paynter 10 88 103.0
Paynter 8 100 88.0
Выберите строку с максимальным значением из каждой группы
In [139]: df = pd.DataFrame(
.....: {
.....: "host": ["other", "other", "that", "this", "this"],
.....: "service": ["mail", "web", "mail", "mail", "web"],
.....: "no": [1, 2, 1, 2, 1],
.....: }
.....: ).set_index(["host", "service"])
.....:
In [140]: mask = df.groupby(level=0).agg("idxmax")
In [141]: df_count = df.loc[mask["no"]].reset_index()
In [142]: df_count
Out[142]:
host service no
0 other web 2
1 that mail 1
2 this mail 2
Группировка, как в Python's itertools.groupby
In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=["A"])
In [144]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).groups
Out[144]: {1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]}
In [145]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).cumsum()
Out[145]:
0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64
Расширение данных#
Скользящее вычисление окна на основе значений вместо подсчетов
Разделение#
Создать список DataFrame, разделенных с использованием логики, включенной в строки.
In [146]: df = pd.DataFrame(
.....: data={
.....: "Case": ["A", "A", "A", "B", "A", "A", "B", "A", "A"],
.....: "Data": np.random.randn(9),
.....: }
.....: )
.....:
In [147]: dfs = list(
.....: zip(
.....: *df.groupby(
.....: (1 * (df["Case"] == "B"))
.....: .cumsum()
.....: .rolling(window=3, min_periods=1)
.....: .median()
.....: )
.....: )
.....: )[-1]
.....:
In [148]: dfs[0]
Out[148]:
Case Data
0 A 0.276232
1 A -1.087401
2 A -0.673690
3 B 0.113648
In [149]: dfs[1]
Out[149]:
Case Data
4 A -1.478427
5 A 0.524988
6 B 0.404705
In [150]: dfs[2]
Out[150]:
Case Data
7 A 0.577046
8 A -1.715002
Сводная таблица#
The Сводная таблица документация.
Частичные суммы и промежуточные итоги
In [151]: df = pd.DataFrame(
.....: data={
.....: "Province": ["ON", "QC", "BC", "AL", "AL", "MN", "ON"],
.....: "City": [
.....: "Toronto",
.....: "Montreal",
.....: "Vancouver",
.....: "Calgary",
.....: "Edmonton",
.....: "Winnipeg",
.....: "Windsor",
.....: ],
.....: "Sales": [13, 6, 16, 8, 4, 3, 1],
.....: }
.....: )
.....:
In [152]: table = pd.pivot_table(
.....: df,
.....: values=["Sales"],
.....: index=["Province"],
.....: columns=["City"],
.....: aggfunc="sum",
.....: margins=True,
.....: )
.....:
In [153]: table.stack("City", future_stack=True)
Out[153]:
Sales
Province City
AL Calgary 8.0
Edmonton 4.0
Montreal NaN
Toronto NaN
Vancouver NaN
... ...
All Toronto 13.0
Vancouver 16.0
Windsor 1.0
Winnipeg 3.0
All 51.0
[48 rows x 1 columns]
In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]
In [155]: df = pd.DataFrame(
.....: {
.....: "ID": ["x%d" % r for r in range(10)],
.....: "Gender": ["F", "M", "F", "M", "F", "M", "F", "M", "M", "M"],
.....: "ExamYear": [
.....: "2007",
.....: "2007",
.....: "2007",
.....: "2008",
.....: "2008",
.....: "2008",
.....: "2008",
.....: "2009",
.....: "2009",
.....: "2009",
.....: ],
.....: "Class": [
.....: "algebra",
.....: "stats",
.....: "bio",
.....: "algebra",
.....: "algebra",
.....: "stats",
.....: "stats",
.....: "algebra",
.....: "bio",
.....: "bio",
.....: ],
.....: "Participated": [
.....: "yes",
.....: "yes",
.....: "yes",
.....: "yes",
.....: "no",
.....: "yes",
.....: "yes",
.....: "yes",
.....: "yes",
.....: "yes",
.....: ],
.....: "Passed": ["yes" if x > 50 else "no" for x in grades],
.....: "Employed": [
.....: True,
.....: True,
.....: True,
.....: False,
.....: False,
.....: False,
.....: False,
.....: True,
.....: True,
.....: False,
.....: ],
.....: "Grade": grades,
.....: }
.....: )
.....:
In [156]: df.groupby("ExamYear").agg(
.....: {
.....: "Participated": lambda x: x.value_counts()["yes"],
.....: "Passed": lambda x: sum(x == "yes"),
.....: "Employed": lambda x: sum(x),
.....: "Grade": lambda x: sum(x) / len(x),
.....: }
.....: )
.....:
Out[156]:
Participated Passed Employed Grade
ExamYear
2007 3 2 3 74.000000
2008 3 3 0 68.500000
2009 3 2 2 60.666667
Построение графика pandas DataFrame с данными год к году
Для создания перекрестной таблицы года и месяца:
In [157]: df = pd.DataFrame(
.....: {"value": np.random.randn(36)},
.....: index=pd.date_range("2011-01-01", freq="ME", periods=36),
.....: )
.....:
In [158]: pd.pivot_table(
.....: df, index=df.index.month, columns=df.index.year, values="value", aggfunc="sum"
.....: )
.....:
Out[158]:
2011 2012 2013
1 -1.039268 -0.968914 2.565646
2 -0.370647 -1.294524 1.431256
3 -1.157892 0.413738 1.340309
4 -1.344312 0.276662 -1.170299
5 0.844885 -0.472035 -0.226169
6 1.075770 -0.013960 0.410835
7 -0.109050 -0.362543 0.813850
8 1.643563 -0.006154 0.132003
9 -1.469388 -0.923061 -0.827317
10 0.357021 0.895717 -0.076467
11 -0.674600 0.805244 -1.187678
12 -1.776904 -1.206412 1.130127
Apply#
Применение скользящего окна для организации - Преобразование вложенных списков в фрейм с MultiIndex
In [159]: df = pd.DataFrame(
.....: data={
.....: "A": [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
.....: "B": [["a", "b", "c"], ["jj", "kk"], ["ccc"]],
.....: },
.....: index=["I", "II", "III"],
.....: )
.....:
In [160]: def SeriesFromSubList(aList):
.....: return pd.Series(aList)
.....:
In [161]: df_orgz = pd.concat(
.....: {ind: row.apply(SeriesFromSubList) for ind, row in df.iterrows()}
.....: )
.....:
In [162]: df_orgz
Out[162]:
0 1 2 3
I A 2 4 8 16.0
B a b c NaN
II A 100 200 NaN NaN
B jj kk NaN NaN
III A 10 20.0 30.0 NaN
B ccc NaN NaN NaN
Скользящее применение с DataFrame, возвращающее Series
Скользящее применение к нескольким столбцам, где функция вычисляет Series перед возвратом Scalar из Series
In [163]: df = pd.DataFrame(
.....: data=np.random.randn(2000, 2) / 10000,
.....: index=pd.date_range("2001-01-01", periods=2000),
.....: columns=["A", "B"],
.....: )
.....:
In [164]: df
Out[164]:
A B
2001-01-01 -0.000144 -0.000141
2001-01-02 0.000161 0.000102
2001-01-03 0.000057 0.000088
2001-01-04 -0.000221 0.000097
2001-01-05 -0.000201 -0.000041
... ... ...
2006-06-19 0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113 0.000114
2006-06-22 0.000136 0.000109
2006-06-23 0.000027 0.000030
[2000 rows x 2 columns]
In [165]: def gm(df, const):
.....: v = ((((df["A"] + df["B"]) + 1).cumprod()) - 1) * const
.....: return v.iloc[-1]
.....:
In [166]: s = pd.Series(
.....: {
.....: df.index[i]: gm(df.iloc[i: min(i + 51, len(df) - 1)], 5)
.....: for i in range(len(df) - 50)
.....: }
.....: )
.....:
In [167]: s
Out[167]:
2001-01-01 0.000930
2001-01-02 0.002615
2001-01-03 0.001281
2001-01-04 0.001117
2001-01-05 0.002772
...
2006-04-30 0.003296
2006-05-01 0.002629
2006-05-02 0.002081
2006-05-03 0.004247
2006-05-04 0.003928
Length: 1950, dtype: float64
Скользящее применение с DataFrame, возвращающее скаляр
вызов
In [168]: rng = pd.date_range(start="2014-01-01", periods=100)
In [169]: df = pd.DataFrame(
.....: {
.....: "Open": np.random.randn(len(rng)),
.....: "Close": np.random.randn(len(rng)),
.....: "Volume": np.random.randint(100, 2000, len(rng)),
.....: },
.....: index=rng,
.....: )
.....:
In [170]: df
Out[170]:
Open Close Volume
2014-01-01 -1.611353 -0.492885 1219
2014-01-02 -3.000951 0.445794 1054
2014-01-03 -0.138359 -0.076081 1381
2014-01-04 0.301568 1.198259 1253
2014-01-05 0.276381 -0.669831 1728
... ... ... ...
2014-04-06 -0.040338 0.937843 1188
2014-04-07 0.359661 -0.285908 1864
2014-04-08 0.060978 1.714814 941
2014-04-09 1.759055 -0.455942 1065
2014-04-10 0.138185 -1.147008 1453
[100 rows x 3 columns]
In [171]: def vwap(bars):
.....: return (bars.Close * bars.Volume).sum() / bars.Volume.sum()
.....:
In [172]: window = 5
In [173]: s = pd.concat(
.....: [
.....: (pd.Series(vwap(df.iloc[i: i + window]), index=[df.index[i + window]]))
.....: for i in range(len(df) - window)
.....: ]
.....: )
.....:
In [174]: s.round(2)
Out[174]:
2014-01-06 0.02
2014-01-07 0.11
2014-01-08 0.10
2014-01-09 0.07
2014-01-10 -0.29
...
2014-04-06 -0.63
2014-04-07 -0.02
2014-04-08 -0.03
2014-04-09 0.34
2014-04-10 0.29
Length: 95, dtype: float64
Timeseries#
Использование индексатора между временем
Создание диапазона дат, исключающего выходные и включающего только определённые времена
Агрегация и построение графиков временных рядов
Преобразовать матрицу с часами в столбцах и днями в строках в непрерывную последовательность строк в виде временного ряда. Как переупорядочить DataFrame в Python pandas?
Обработка дубликатов при переиндексации временного ряда к заданной частоте
Вычислить первый день месяца для каждой записи в DatetimeIndex
In [175]: dates = pd.date_range("2000-01-01", periods=5)
In [176]: dates.to_period(freq="M").to_timestamp()
Out[176]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
'2000-01-01'],
dtype='datetime64[ns]', freq=None)
Ресемплинг#
The Resample документация.
Использование Grouper вместо TimeGrouper для временной группировки значений
Группировка по времени с некоторыми пропущенными значениями
Допустимые аргументы частоты для Grouper Timeseries
Группировка с использованием MultiIndex
Использование TimeGrouper и другой группировки для создания подгрупп, затем применение пользовательской функции GH 3791
Ресемплинг с пользовательскими периодами
Передискретизация внутридневного фрейма без добавления новых дней
Объединить#
The Объединить документация.
Объединить два DataFrame с перекрывающимися индексами (эмулировать R rbind)
In [177]: rng = pd.date_range("2000-01-01", periods=6)
In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=["A", "B", "C"])
In [179]: df2 = df1.copy()
В зависимости от построения df, ignore_index может потребоваться
In [180]: df = pd.concat([df1, df2], ignore_index=True)
In [181]: df
Out[181]:
A B C
0 -0.870117 -0.479265 -0.790855
1 0.144817 1.726395 -0.464535
2 -0.821906 1.597605 0.187307
3 -0.128342 -1.511638 -0.289858
4 0.399194 -1.430030 -0.639760
5 1.115116 -2.012600 1.810662
6 -0.870117 -0.479265 -0.790855
7 0.144817 1.726395 -0.464535
8 -0.821906 1.597605 0.187307
9 -0.128342 -1.511638 -0.289858
10 0.399194 -1.430030 -0.639760
11 1.115116 -2.012600 1.810662
Самообъединение DataFrame GH 2996
In [182]: df = pd.DataFrame(
.....: data={
.....: "Area": ["A"] * 5 + ["C"] * 2,
.....: "Bins": [110] * 2 + [160] * 3 + [40] * 2,
.....: "Test_0": [0, 1, 0, 1, 2, 0, 1],
.....: "Data": np.random.randn(7),
.....: }
.....: )
.....:
In [183]: df
Out[183]:
Area Bins Test_0 Data
0 A 110 0 -0.433937
1 A 110 1 -0.160552
2 A 160 0 0.744434
3 A 160 1 1.754213
4 A 160 2 0.000850
5 C 40 0 0.342243
6 C 40 1 1.070599
In [184]: df["Test_1"] = df["Test_0"] - 1
In [185]: pd.merge(
.....: df,
.....: df,
.....: left_on=["Bins", "Area", "Test_0"],
.....: right_on=["Bins", "Area", "Test_1"],
.....: suffixes=("_L", "_R"),
.....: )
.....:
Out[185]:
Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R
0 A 110 0 -0.433937 -1 1 -0.160552 0
1 A 160 0 0.744434 -1 1 1.754213 0
2 A 160 1 1.754213 0 2 0.000850 1
3 C 40 0 0.342243 -1 1 1.070599 0
Как установить индекс и объединить
Объединение с критерием на основе значений
Использование searchsorted для слияния на основе значений внутри диапазона
Построение графиков#
The Построение графиков документация.
Сделать Matplotlib похожим на R
Установка основных и второстепенных меток оси x
Построение нескольких графиков в IPython Jupyter notebook
Создание многострочного графика
Аннотировать график временного ряда
Аннотировать график временного ряда #2
Создание встроенных графиков в файлах Excel с использованием Pandas, Vincent и xlsxwriter
Боксплот для каждого квартиля стратифицирующей переменной
In [186]: df = pd.DataFrame(
.....: {
.....: "stratifying_var": np.random.uniform(0, 100, 20),
.....: "price": np.random.normal(100, 5, 20),
.....: }
.....: )
.....:
In [187]: df["quartiles"] = pd.qcut(
.....: df["stratifying_var"], 4, labels=["0-25%", "25-50%", "50-75%", "75-100%"]
.....: )
.....:
In [188]: df.boxplot(column="price", by="quartiles")
Out[188]:
Ввод/вывод данных#
Сравнение производительности SQL и HDF5
CSV#
The CSV документация
Чтение только определенных строк CSV по частям
Чтение первых нескольких строк фрейма
Чтение файла, который сжат, но не с помощью gzip/bz2 (нативные форматы сжатия, которые read_csv понимает).
Этот пример показывает WinZipped файл, но является общим применением открытия файла в контекстном менеджере и использования этого дескриптора для чтения.
Смотрите здесь
Определение типов данных из файла
Обработка некорректных строк GH 2886
Запись CSV с многострочным индексом без дубликатов
Чтение нескольких файлов для создания одного DataFrame#
Лучший способ объединить несколько файлов в один DataFrame — прочитать отдельные фреймы один за другим, поместить все
отдельные фреймы в список, а затем объединить фреймы в списке с помощью pd.concat():
In [189]: for i in range(3):
.....: data = pd.DataFrame(np.random.randn(10, 4))
.....: data.to_csv("file_{}.csv".format(i))
.....:
In [190]: files = ["file_0.csv", "file_1.csv", "file_2.csv"]
In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
Вы можете использовать тот же подход для чтения всех файлов, соответствующих шаблону. Вот пример с использованием glob:
In [192]: import glob
In [193]: import os
In [194]: files = glob.glob("file_*.csv")
In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
Наконец, эта стратегия будет работать с другими pd.read_*(...) функции, описанные в документация io.
Разбор компонентов даты в нескольких столбцах#
Разбор компонентов даты в нескольких столбцах выполняется быстрее с форматом
In [196]: i = pd.date_range("20000101", periods=10000)
In [197]: df = pd.DataFrame({"year": i.year, "month": i.month, "day": i.day})
In [198]: df.head()
Out[198]:
year month day
0 2000 1 1
1 2000 1 2
2 2000 1 3
3 2000 1 4
4 2000 1 5
In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
.....: ds = df.apply(lambda x: "%04d%02d%02d" % (x["year"], x["month"], x["day"]), axis=1)
.....: ds.head()
.....: %timeit pd.to_datetime(ds)
.....:
2.94 ms +- 300 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
1.23 ms +- 4.74 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
Пропустить строку между заголовком и данными#
In [200]: data = """;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: date;Param1;Param2;Param4;Param5
.....: ;m²;°C;m²;m
.....: ;;;;
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: """
.....:
Вариант 1: явно передать строки для пропуска#
In [201]: from io import StringIO
In [202]: pd.read_csv(
.....: StringIO(data),
.....: sep=";",
.....: skiprows=[11, 12],
.....: index_col=0,
.....: parse_dates=True,
.....: header=10,
.....: )
.....:
Out[202]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
Вариант 2: чтение названий столбцов, а затем данных#
In [203]: pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')
In [204]: columns = pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns
In [205]: pd.read_csv(
.....: StringIO(data), sep=";", index_col=0, header=12, parse_dates=True, names=columns
.....: )
.....:
Out[205]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
SQL#
The SQL документация
Excel#
The Excel документация
Чтение из файлоподобного дескриптора
Изменение форматирования в выводе XlsxWriter
Загрузка только видимых листов GH 19842#issuecomment-892150745
HTML#
Чтение HTML-таблиц с сервера, который не может обработать заголовок запроса по умолчанию
HDFStore#
The HDFStores документация
Простые запросы с индексом Timestamp
Управление разнородными данными с использованием связанной иерархии нескольких таблиц GH 3032
Слияние таблиц на диске с миллионами строк
Избежание несоответствий при записи в хранилище из нескольких процессов/потоков
Дедупликация большого хранилища по частям, по сути рекурсивная операция редукции. Показывает функцию для приема данных из csv-файла и создания хранилища по частям, с парсингом дат. Смотрите здесь
Создание хранилища по частям из csv-файла
Добавление в хранилище при создании уникального индекса
Рабочие процессы с большими данными
Groupby на HDFStore с низкой плотностью групп
Groupby на HDFStore с высокой плотностью групп
Иерархические запросы к HDFStore
Подсчёт с использованием HDFStore
Устранение исключений HDFStore
Установка min_itemsize со строками
Использование ptrepack для создания полностью отсортированного индекса в хранилище
Сохранение атрибутов в групповой узел
In [206]: df = pd.DataFrame(np.random.randn(8, 3))
In [207]: store = pd.HDFStore("test.h5")
In [208]: store.put("df", df)
# you can store an arbitrary Python object via pickle
In [209]: store.get_storer("df").attrs.my_attribute = {"A": 10}
In [210]: store.get_storer("df").attrs.my_attribute
Out[210]: {'A': 10}
Вы можете создать или загрузить HDFStore в памяти, передав driver
параметр для PyTables. Изменения записываются на диск только при закрытии HDFStore.
In [211]: store = pd.HDFStore("test.h5", "w", driver="H5FD_CORE")
In [212]: df = pd.DataFrame(np.random.randn(8, 3))
In [213]: store["test"] = df
# only after closing the store, data is written to disk:
In [214]: store.close()
Бинарные файлы#
pandas легко принимает массивы записей NumPy, если вам нужно прочитать двоичный
файл, состоящий из массива структур C. Например, учитывая эту программу на C
в файле с именем main.c скомпилированный с gcc main.c -std=gnu99 на 64-битной машине,
#include
#include
typedef struct _Data
{
int32_t count;
double avg;
float scale;
} Data;
int main(int argc, const char *argv[])
{
size_t n = 10;
Data d[n];
for (int i = 0; i < n; ++i)
{
d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;
}
FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);
return 0;
}
следующий код Python прочитает бинарный файл 'binary.dat' в
pandas DataFrame, где каждый элемент структуры соответствует столбцу
во фрейме:
names = "count", "avg", "scale"
# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = "i4", "f8", "f4"
dt = np.dtype({"names": names, "offsets": offsets, "formats": formats}, align=True)
df = pd.DataFrame(np.fromfile("binary.dat", dt))
Примечание
Смещения элементов структуры могут различаться в зависимости от архитектуры машины, на которой был создан файл. Использование такого формата необработанного двоичного файла для общего хранения данных не рекомендуется, так как он не является кроссплатформенным. Мы рекомендуем использовать либо HDF5, либо parquet, оба из которых поддерживаются средствами ввода-вывода pandas.
Вычисления#
Численное интегрирование (на основе выборок) временного ряда
Корреляция#
Часто полезно получить нижнюю (или верхнюю) треугольную форму корреляционной матрицы, вычисленной из DataFrame.corr(). Это можно достичь, передав булеву маску в where следующим образом:
In [215]: df = pd.DataFrame(np.random.random(size=(100, 5)))
In [216]: corr_mat = df.corr()
In [217]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool_), k=-1)
In [218]: corr_mat.where(mask)
Out[218]:
0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 -0.079861 NaN NaN NaN NaN
2 -0.236573 0.183801 NaN NaN NaN
3 -0.013795 -0.051975 0.037235 NaN NaN
4 -0.031974 0.118342 -0.073499 -0.02063 NaN
The method аргумент внутри DataFrame.corr может принимать вызываемый объект в дополнение к именованным типам корреляции. Здесь мы вычисляем корреляция расстояния матрица для DataFrame объект.
In [219]: def distcorr(x, y):
.....: n = len(x)
.....: a = np.zeros(shape=(n, n))
.....: b = np.zeros(shape=(n, n))
.....: for i in range(n):
.....: for j in range(i + 1, n):
.....: a[i, j] = abs(x[i] - x[j])
.....: b[i, j] = abs(y[i] - y[j])
.....: a += a.T
.....: b += b.T
.....: a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
.....: b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
.....: A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
.....: B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
.....: cov_ab = np.sqrt(np.nansum(A * B)) / n
.....: std_a = np.sqrt(np.sqrt(np.nansum(A ** 2)) / n)
.....: std_b = np.sqrt(np.sqrt(np.nansum(B ** 2)) / n)
.....: return cov_ab / std_a / std_b
.....:
In [220]: df = pd.DataFrame(np.random.normal(size=(100, 3)))
In [221]: df.corr(method=distcorr)
Out[221]:
0 1 2
0 1.000000 0.197613 0.216328
1 0.197613 1.000000 0.208749
2 0.216328 0.208749 1.000000
Timedeltas#
The Timedeltas документация.
In [222]: import datetime
In [223]: s = pd.Series(pd.date_range("2012-1-1", periods=3, freq="D"))
In [224]: s - s.max()
Out[224]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]
In [225]: s.max() - s
Out[225]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]
In [226]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[226]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]
In [227]: s + datetime.timedelta(minutes=5)
Out[227]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
In [228]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[228]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]
In [229]: datetime.timedelta(minutes=5) + s
Out[229]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
Сложение и вычитание дельт и дат
In [230]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])
In [231]: df = pd.DataFrame({"A": s, "B": deltas})
In [232]: df
Out[232]:
A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days
In [233]: df["New Dates"] = df["A"] + df["B"]
In [234]: df["Delta"] = df["A"] - df["New Dates"]
In [235]: df
Out[235]:
A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days
In [236]: df.dtypes
Out[236]:
A datetime64[ns]
B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object
Значения могут быть установлены в NaT с использованием np.nan, аналогично datetime
In [237]: y = s - s.shift()
In [238]: y
Out[238]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]
In [239]: y[1] = np.nan
In [240]: y
Out[240]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]
Создание примерных данных#
Чтобы создать dataframe из каждой комбинации некоторых заданных значений, как в R's expand.grid()
функция, мы можем создать словарь, где ключи - это имена столбцов, а значения - списки
значений данных:
In [241]: def expand_grid(data_dict):
.....: rows = itertools.product(*data_dict.values())
.....: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:
In [242]: df = expand_grid(
.....: {"height": [60, 70], "weight": [100, 140, 180], "sex": ["Male", "Female"]}
.....: )
.....:
In [243]: df
Out[243]:
height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female
Постоянный ряд#
Чтобы оценить, имеет ли ряд постоянное значение, мы можем проверить, если series.nunique() <= 1.
Однако более производительный подход, который не подсчитывает все уникальные значения сначала:
In [244]: v = s.to_numpy()
In [245]: is_constant = v.shape[0] == 0 or (s[0] == s).all()
Этот подход предполагает, что ряд не содержит пропущенных значений. Если нам нужно удалить значения NA, мы можем просто сначала удалить эти значения:
In [246]: v = s.dropna().to_numpy()
In [247]: is_constant = v.shape[0] == 0 or (s[0] == s).all()
Если пропущенные значения считаются отличными от любого другого значения, то можно использовать:
In [248]: v = s.to_numpy()
In [249]: is_constant = v.shape[0] == 0 or (s[0] == s).all() or not pd.notna(v).any()
(Обратите внимание, что этот пример не различает np.nan, pd.NA и None)