pandas.core.groupby.DataFrameGroupBy.prod#

DataFrameGroupBy.prod(numeric_only=False, min_count=0)[источник]#

Вычислить произведение значений группы.

Параметры:
numeric_onlybool, по умолчанию False

Включать только столбцы с типами float, int, boolean.

Изменено в версии 2.0.0: numeric_only больше не принимает None.

min_countint, по умолчанию 0

Необходимое количество допустимых значений для выполнения операции. Если меньше чем min_count если присутствуют не-NA значения, результат будет NA.

Возвращает:
Series или DataFrame

Вычисленное произведение значений в каждой группе.

Примеры

Для SeriesGroupBy:

>>> lst = ['a', 'a', 'b', 'b']
>>> ser = pd.Series([1, 2, 3, 4], index=lst)
>>> ser
a    1
a    2
b    3
b    4
dtype: int64
>>> ser.groupby(level=0).prod()
a    2
b   12
dtype: int64

Для DataFrameGroupBy:

>>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]]
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],
...                   index=["tiger", "leopard", "cheetah", "lion"])
>>> df
          a  b  c
  tiger   1  8  2
leopard   1  2  5
cheetah   2  5  8
   lion   2  6  9
>>> df.groupby("a").prod()
     b    c
a
1   16   10
2   30   72