pandas.core.window.rolling.Rolling.sum#
- Rolling.sum(numeric_only=False, движок=None, engine_kwargs=None)[источник]#
Вычислить скользящую сумму.
- Параметры:
- numeric_onlybool, по умолчанию False
Включать только столбцы с типами float, int, boolean.
Добавлено в версии 1.5.0.
- движокstr, по умолчанию None
'cython': Выполняет операцию через C-расширения из cython.'numba': Запускает операцию через JIT-скомпилированный код из numba.None: По умолчанию'cython'или глобальная установкаcompute.use_numbaДобавлено в версии 1.3.0.
- engine_kwargsdict, по умолчанию None
Для
'cython'движок, нет принятыхengine_kwargsДля
'numba'движок, движок может приниматьnopython,nogilиparallelключи словаря. Значения должны быть либоTrueилиFalse. По умолчаниюengine_kwargsдля'numba'движок это{'nopython': True, 'nogil': False, 'parallel': False}Добавлено в версии 1.3.0.
- Возвращает:
- Series или DataFrame
Тип возвращаемого значения такой же, как у исходного объекта с
np.float64тип данных.
Смотрите также
pandas.Series.rollingВызов rolling с данными Series.
pandas.DataFrame.rollingВызов rolling с DataFrames.
pandas.Series.sumАгрегирование суммы для Series.
pandas.DataFrame.sumАгрегация суммы для DataFrame.
Примечания
См. Движок Numba и Numba (JIT-компиляция) для расширенной документации и соображений производительности для движка Numba.
Примеры
>>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64
>>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64
>>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64
Для DataFrame каждая сумма вычисляется по столбцам.
>>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25
>>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0