numpy.linalg.outer#

linalg.outer(x1, x2, /)[источник]#

Вычисление внешнего произведения двух векторов.

Эта функция совместима с Array API. По сравнению с np.outer он принимает только одномерные входные данные.

Параметры:
x1(M,) array_like

Одномерный входной массив размера N. Должен иметь числовой тип данных.

x2(N,) array_like

Одномерный входной массив размера M. Должен иметь числовой тип данных.

Возвращает:
выход(M, N) ndarray

out[i, j] = a[i] * b[j]

Смотрите также

outer

Примеры

Создать (очень грубая сетка для вычисления множества Мандельброта:

>>> rl = np.linalg.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1.,  0.,  1.,  2.],
       [-2., -1.,  0.,  1.,  2.],
       [-2., -1.,  0.,  1.,  2.],
       [-2., -1.,  0.,  1.,  2.],
       [-2., -1.,  0.,  1.,  2.]])
>>> im = np.linalg.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
       [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
       [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
       [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j,  0.+2.j,  1.+2.j,  2.+2.j],
       [-2.+1.j, -1.+1.j,  0.+1.j,  1.+1.j,  2.+1.j],
       [-2.+0.j, -1.+0.j,  0.+0.j,  1.+0.j,  2.+0.j],
       [-2.-1.j, -1.-1.j,  0.-1.j,  1.-1.j,  2.-1.j],
       [-2.-2.j, -1.-2.j,  0.-2.j,  1.-2.j,  2.-2.j]])

Пример использования "вектора" букв:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.linalg.outer(x, [1, 2, 3])
array([['a', 'aa', 'aaa'],
       ['b', 'bb', 'bbb'],
       ['c', 'cc', 'ccc']], dtype=object)