OneToOneFeatureMixin#
- класс sklearn.base.OneToOneFeatureMixin[источник]#
Предоставляет
get_feature_names_outдля простых трансформеров.Этот миксин предполагает, что существует взаимно однозначное соответствие между входными признаками и выходными признаками, такими как
StandardScaler.Примеры
>>> import numpy as np >>> from sklearn.base import OneToOneFeatureMixin, BaseEstimator >>> class MyEstimator(OneToOneFeatureMixin, BaseEstimator): ... def fit(self, X, y=None): ... self.n_features_in_ = X.shape[1] ... return self >>> X = np.array([[1, 2], [3, 4]]) >>> MyEstimator().fit(X).get_feature_names_out() array(['x0', 'x1'], dtype=object)
- get_feature_names_out(input_features=None)[источник]#
Получить имена выходных признаков для преобразования.
- Параметры:
- input_featuresarray-like из str или None, по умолчанию=None
Входные признаки.
Если
input_featuresявляетсяNone, затемfeature_names_in_используется как имена признаков в. Еслиfeature_names_in_не определено, тогда генерируются следующие имена входных признаков:["x0", "x1", ..., "x(n_features_in_ - 1)"].Если
input_featuresявляется массивоподобным, тогдаinput_featuresдолжен соответствоватьfeature_names_in_iffeature_names_in_определен.
- Возвращает:
- feature_names_outndarray из str объектов
То же, что и входные признаки.