KernelCenterer#
- класс sklearn.preprocessing.KernelCenterer[источник]#
Центрирование произвольной матрицы ядра \(K\).
Определим ядро \(K\) такой, что:
\[K(X, Y) = \phi(X) . \phi(Y)^{T}\]\(\phi(X)\) является функцией отображения строк \(X\) в гильбертово пространство и \(K\) имеет форму
(n_samples, n_samples).Этот класс позволяет вычислять \(\tilde{K}(X, Y)\) такой, что:
\[\tilde{K(X, Y)} = \tilde{\phi}(X) . \tilde{\phi}(Y)^{T}\]\(\tilde{\phi}(X)\) — это центрированные отображённые данные в гильбертовом пространстве.
KernelCentererцентрирует признаки без явного вычисления отображения \(\phi(\cdot)\). Работа с центрированными ядрами иногда ожидается при работе с алгебраическими вычислениями, такими как собственное разложение дляKernelPCAнапример.Подробнее в Руководство пользователя.
- Атрибуты:
- K_fit_rows_ndarray формы (n_samples,)
Среднее значение каждого столбца матрицы ядра.
- K_fit_all_float
Среднее значение матрицы ядра.
- n_features_in_int
Количество признаков, замеченных во время fit.
Добавлено в версии 0.24.
- feature_names_in_ndarray формы (
n_features_in_,) Имена признаков, наблюдаемых во время fit. Определено только когда
Xимеет имена признаков, которые все являются строками.Добавлено в версии 1.0.
Смотрите также
sklearn.kernel_approximation.NystroemПриближение карты ядра с использованием подмножества обучающих данных.
Ссылки
Примеры
>>> from sklearn.preprocessing import KernelCenterer >>> from sklearn.metrics.pairwise import pairwise_kernels >>> X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] >>> K = pairwise_kernels(X, metric='linear') >>> K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]]) >>> transformer = KernelCenterer().fit(K) >>> transformer KernelCenterer() >>> transformer.transform(K) array([[ 5., 0., -5.], [ 0., 14., -14.], [ -5., -14., 19.]])
- fit(K, y=None)[источник]#
Обучить KernelCenterer.
- Параметры:
- Kndarray формы (n_samples, n_samples)
Матрица ядра.
- yNone
Игнорируется.
- Возвращает:
- selfobject
Возвращает сам экземпляр.
- fit_transform(X, y=None, **fit_params)[источник]#
Обучение на данных с последующим преобразованием.
Обучает преобразователь на
Xиyс необязательными параметрамиfit_paramsи возвращает преобразованную версиюX.- Параметры:
- Xarray-like формы (n_samples, n_features)
Входные выборки.
- yarray-like формы (n_samples,) или (n_samples, n_outputs), default=None
Целевые значения (None для неконтролируемых преобразований).
- **fit_paramsdict
Дополнительные параметры обучения. Передавайте только если оценщик принимает дополнительные параметры в своем
fitметод.
- Возвращает:
- X_newndarray массив формы (n_samples, n_features_new)
Преобразованный массив.
- get_feature_names_out(input_features=None)[источник]#
Получить имена выходных признаков для преобразования.
Имена признаков на выходе будут иметь префикс в виде имени класса в нижнем регистре. Например, если преобразователь выводит 3 признака, то имена признаков на выходе:
["class_name0", "class_name1", "class_name2"].- Параметры:
- input_featuresarray-like из str или None, по умолчанию=None
Используется только для проверки имен признаков с именами, встреченными в
fit.
- Возвращает:
- feature_names_outndarray из str объектов
Преобразованные имена признаков.
- 6332()[источник]#
Получить маршрутизацию метаданных этого объекта.
Пожалуйста, проверьте Руководство пользователя о том, как работает механизм маршрутизации.
- Возвращает:
- маршрутизацияMetadataRequest
A
MetadataRequestИнкапсуляция информации о маршрутизации.
- get_params(глубокий=True)[источник]#
Получить параметры для этого оценщика.
- Параметры:
- глубокийbool, по умолчанию=True
Если True, вернет параметры для этого оценщика и вложенных подобъектов, которые являются оценщиками.
- Возвращает:
- paramsdict
Имена параметров, сопоставленные с их значениями.
- set_output(*, преобразовать=None)[источник]#
Установить контейнер вывода.
См. Введение API set_output для примера использования API.
- Параметры:
- преобразовать{“default”, “pandas”, “polars”}, по умолчанию=None
Настройка вывода
transformиfit_transform."default": Формат вывода трансформера по умолчанию"pandas": DataFrame вывод"polars": Вывод PolarsNone: Конфигурация преобразования не изменена
Добавлено в версии 1.4:
"polars"опция была добавлена.
- Возвращает:
- selfэкземпляр estimator
Экземпляр оценщика.
- set_params(**params)[источник]#
Установить параметры этого оценщика.
Метод работает как на простых оценщиках, так и на вложенных объектах (таких как
Pipeline). Последние имеют параметры видачтобы можно было обновить каждый компонент вложенного объекта.__ - Параметры:
- **paramsdict
Параметры оценщика.
- Возвращает:
- selfэкземпляр estimator
Экземпляр оценщика.
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') KernelCenterer[источник]#
Настроить, следует ли запрашивать передачу метаданных в
transformметод.Обратите внимание, что этот метод актуален только тогда, когда этот оценщик используется как под-оценщик внутри мета-оценщик и маршрутизация метаданных включена с помощью
enable_metadata_routing=True(см.sklearn.set_config). Пожалуйста, проверьте Руководство пользователя о том, как работает механизм маршрутизации.Варианты для каждого параметра:
True: запрашиваются метаданные и передаютсяtransformесли предоставлено. Запрос игнорируется, если метаданные не предоставлены.False: метаданные не запрашиваются, и мета-оценщик не передаст их вtransform.None: метаданные не запрашиваются, и мета-оценщик выдаст ошибку, если пользователь предоставит их.str: метаданные должны передаваться мета-оценщику с этим заданным псевдонимом вместо исходного имени.
По умолчанию (
sklearn.utils.metadata_routing.UNCHANGED) сохраняет существующий запрос. Это позволяет изменять запрос для некоторых параметров, но не для других.Добавлено в версии 1.3.
- Параметры:
- copystr, True, False или None, по умолчанию=sklearn.utils.metadata_routing.UNCHANGED
Маршрутизация метаданных для
copyпараметр вtransform.
- Возвращает:
- selfobject
Обновленный объект.
- преобразовать(K, copy=True)[источник]#
Центрировать матрицу ядра.
- Параметры:
- Kndarray формы (n_samples1, n_samples2)
Матрица ядра.
- copybool, по умолчанию=True
Установите значение False для выполнения вычислений на месте.
- Возвращает:
- K_newndarray формы (n_samples1, n_samples2)
Возвращает сам экземпляр.