SelectorMixin#

класс sklearn.feature_selection.SelectorMixin[источник]#

Миксин-трансформер, выполняющий выбор признаков по заданной маске поддержки

Этот миксин предоставляет реализацию селектора признаков с transform и inverse_transform функциональность при наличии реализации _get_support_mask.

Примеры

>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> from sklearn.base import BaseEstimator
>>> from sklearn.feature_selection import SelectorMixin
>>> class FeatureSelector(SelectorMixin, BaseEstimator):
...    def fit(self, X, y=None):
...        self.n_features_in_ = X.shape[1]
...        return self
...    def _get_support_mask(self):
...        mask = np.zeros(self.n_features_in_, dtype=bool)
...        mask[:2] = True  # select the first two features
...        return mask
>>> X, y = load_iris(return_X_y=True)
>>> FeatureSelector().fit_transform(X, y).shape
(150, 2)
fit_transform(X, y=None, **fit_params)[источник]#

Обучение на данных с последующим преобразованием.

Обучает преобразователь на X и y с необязательными параметрами fit_params и возвращает преобразованную версию X.

Параметры:
Xarray-like формы (n_samples, n_features)

Входные выборки.

yarray-like формы (n_samples,) или (n_samples, n_outputs), default=None

Целевые значения (None для неконтролируемых преобразований).

**fit_paramsdict

Дополнительные параметры обучения. Передавайте только если оценщик принимает дополнительные параметры в своем fit метод.

Возвращает:
X_newndarray массив формы (n_samples, n_features_new)

Преобразованный массив.

get_feature_names_out(input_features=None)[источник]#

Маскировать имена признаков в соответствии с выбранными признаками.

Параметры:
input_featuresarray-like из str или None, по умолчанию=None

Входные признаки.

  • Если input_features является None, затем feature_names_in_ используется как имена признаков в. Если feature_names_in_ не определено, тогда генерируются следующие имена входных признаков: ["x0", "x1", ..., "x(n_features_in_ - 1)"].

  • Если input_features является массивоподобным, тогда input_features должен соответствовать feature_names_in_ if feature_names_in_ определен.

Возвращает:
feature_names_outndarray из str объектов

Преобразованные имена признаков.

get_support(индексы=False)[источник]#

Получить маску или целочисленный индекс выбранных признаков.

Параметры:
индексыbool, по умолчанию=False

Если True, возвращаемое значение будет массивом целых чисел, а не булевой маской.

Возвращает:
поддержкамассив

Индекс, который выбирает сохраняемые признаки из вектора признаков. Если indices равно False, это булев массив формы [# входных признаков], в котором элемент равен True, если соответствующий признак выбран для сохранения. Если indices если True, это целочисленный массив формы [# выходных признаков], значения которого являются индексами входного вектора признаков.

inverse_transform(X)[источник]#

Обратить операцию преобразования.

Параметры:
Xмассив формы [n_samples, n_selected_features]

Входные образцы.

Возвращает:
X_originalмассив формы [n_samples, n_original_features]

X со столбцами нулей, вставленными там, где признаки были бы удалены с помощью transform.

set_output(*, преобразовать=None)[источник]#

Установить контейнер вывода.

См. Введение API set_output для примера использования API.

Параметры:
преобразовать{“default”, “pandas”, “polars”}, по умолчанию=None

Настройка вывода transform и fit_transform.

  • "default": Формат вывода трансформера по умолчанию

  • "pandas": DataFrame вывод

  • "polars": Вывод Polars

  • None: Конфигурация преобразования не изменена

Добавлено в версии 1.4: "polars" опция была добавлена.

Возвращает:
selfэкземпляр estimator

Экземпляр оценщика.

преобразовать(X)[источник]#

Уменьшить X до выбранных признаков.

Параметры:
Xмассив формы [n_samples, n_features]

Входные образцы.

Возвращает:
X_rмассив формы [n_samples, n_selected_features]

Входные выборки только с выбранными признаками.