SGD: Взвешенные выборки#

Построить функцию решения для взвешенного набора данных, где размер точек пропорционален их весу.

plot sgd weighted samples
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import linear_model

# we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
# and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

# plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
fig, ax = plt.subplots()
ax.scatter(
    X[:, 0],
    X[:, 1],
    c=y,
    s=sample_weight,
    alpha=0.9,
    cmap=plt.cm.bone,
    edgecolor="black",
)

# fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
no_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["solid"])

# fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["dashed"])

no_weights_handles, _ = no_weights.legend_elements()
weights_handles, _ = samples_weights.legend_elements()
ax.legend(
    [no_weights_handles[0], weights_handles[0]],
    ["no weights", "with weights"],
    loc="lower left",
)

ax.set(xticks=(), yticks=())
plt.show()

Общее время выполнения скрипта: (0 минут 0.063 секунд)

Связанные примеры

Иллюстрация классификации гауссовским процессом (GPC) на наборе данных XOR

Иллюстрация классификации гауссовским процессом (GPC) на наборе данных XOR

Пример границ SVM

Пример границ SVM

Изменение регуляризации в многослойном перцептроне

Изменение регуляризации в многослойном перцептроне

SGD: выпуклые функции потерь

SGD: выпуклые функции потерь

Галерея, созданная Sphinx-Gallery